

Deriving HTML from PDF
A usage specification for well-tagged ISO 32000-2 files

Version 1.2 December 2025

Copyright © 2025 PDF Association

This work is licensed under the Creative Commons Attribution 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO

Box 1866, Mountain View, CA 94042, USA.

PDF Association

Neue Kantstrasse 14

14057 Berlin, Germany

Tel: +49 (0)30 39 40 50-0

Fax: +49 (0)30 39 40 50-99

E-mail: copyright@pdfa.org

Web: www.pdfa.org

Published in Germany and the United States of America

mailto:copyright@pdfa.org

Foreword

The PDF Association is the meeting place of the PDF industry. The work of preparing

industry standards and best practices is normally carried out through Technical Working

Groups (TWGs). The results of such work may, if desired by the members of the respective

TWG, the Board of Directors, and the members as a whole, may be submitted to ISO for

publication as an International Standard.

Each PDF Association member interested in a subject for which a TWG has been

established has the right to be represented on that committee. International

organizations, governmental and non-governmental, in liaison with the PDF Association,

also take part in the work. The PDF Association collaborates closely with the 3D PDF

Consortium and ISO on all matters of standardization.

The procedures used to develop this document and those intended for its maintenance

are described in the PDF Association's publication process.

Attention is drawn to the possibility that some of the elements of this document may be

the subject of patent rights. The PDF Association shall not be held responsible for

identifying any or all such patent rights. Details of any patent rights identified during the

development of the document will be in the Introduction.

Any trade name used in this document is information given for the convenience of users

and does not constitute an endorsement.

https://www.pdfa.org/publication-process/

PDF Association

© 2025 PDF Association iii

Table of Contents

FOREWORD .. II

INTRODUCTION .. 1

REFERENCES .. 2

1 SCOPE ... 3

2 TERMS AND DEFINITIONS ... 3

3 NOTATION ... 4

4 ALGORITHM FOR DERIVING HTML FROM WELL-TAGGED PDF 4

4.1 Technical context ... 5

4.2 Document handling ... 5
4.2.1 Head .. 5
4.2.2 Associated files associated with PDF document .. 6
4.2.3 The ClassMap .. 6
4.2.4 Body .. 8
4.2.5 Pagination .. 9

4.3 PDF structure elements ... 9
4.3.1 General.. 9
4.3.2 Common processing .. 10

4.3.2.1 Processing PDF structure elements ... 10
4.3.2.2 When the PDF structure element does not use an explicit namespace 10
4.3.2.3 When the PDF structure element uses an explicit namespace ... 11

4.3.3 Mapping PDF structure element types to HTML elements ... 11
4.3.4 Ensuring valid HTML... 16
4.3.5 Special cases .. 17

4.3.5.1 Document ... 17
4.3.5.2 Headings ... 17

4.3.5.2.1 Explicitly numbered heading ... 17
4.3.5.2.2 Headings in Tables .. 18

4.3.5.3 Caption .. 19
4.3.5.3.1 Captions of Figures ... 19
4.3.5.3.2 Captions of Tables .. 19
4.3.5.3.3 Captions of Lists .. 20

4.3.5.4 Lbl .. 21
4.3.5.4.1 Lbl within a LI (list item) ... 21
4.3.5.4.2 Lbl within a Form .. 22
4.3.5.4.3 Lbl as a child of Hn, Caption, TOCI ... 22
4.3.5.4.4 Lbl as a child of other elements ... 22
4.3.5.4.5 Aria attribute on Lbl .. 22

4.3.5.5 Notes ... 23
4.3.5.6 Figure .. 23
4.3.5.7 Formula ... 25
4.3.5.8 L and TOC (lists) .. 26

4.3.5.8.1 List within list .. 26
4.3.5.8.2 L as description list ... 27

PDF Association

© 2025 PDF Association iv

4.3.5.8.3 L within P or Sub ... 28
4.3.5.9 NonStruct, Private and Artifact .. 29
4.3.5.10 Links and references... 29

4.3.5.10.1 Destination ... 30
4.3.5.10.2 URI action .. 30
4.3.5.10.3 GoTo action .. 30

4.3.5.11 Forms .. 30
4.3.5.11.1 Form field processing ... 31
4.3.5.11.2 Form field processing for PDF structure elements from the HTML namespace 31
4.3.5.11.3 Non-interactive forms... 31

4.3.5.12 Code .. 32
4.3.6 Structure element properties .. 33

4.3.6.1 General .. 33
4.3.6.2 Lang ... 33
4.3.6.3 Replacement text.. 33
4.3.6.4 Alternate description .. 34
4.3.6.5 Expansion text .. 35
4.3.6.6 Ref entry .. 36

4.3.7 Attributes .. 36
4.3.7.1 General .. 36
4.3.7.2 Deriving structure attributes to HTML attributes .. 37
4.3.7.3 Deriving structure attributes to CSS properties .. 37
4.3.7.4 List standard structure attribute owner .. 37
4.3.7.5 Table standard structure attribute owner... 38
4.3.7.6 Layout standard structure attribute owner .. 40
4.3.7.7 PrintField standard structure attribute owner ... 43
4.3.7.8 HTML ... 43
4.3.7.9 CSS .. 43
4.3.7.10 ARIA roles .. 43
4.3.7.11 User Properties .. 44
4.3.7.12 Others .. 45

4.4 Processing of a content element .. 45
4.4.1 Paths ... 45
4.4.2 Text ... 46
4.4.3 Image XObjects and inline images .. 46
4.4.4 Form XObjects .. 47
4.4.5 Shadings ... 47
4.4.6 Artifacts ... 47
4.4.7 Handling marked content sequences ... 47

4.4.7.1 Lang attribute in a marked content sequence .. 47
4.4.7.2 ActualText attribute in a marked content sequence .. 47
4.4.7.3 Alt attribute in a marked content sequence .. 48
4.4.7.4 E attribute in a marked content sequence .. 48
4.4.7.5 Multiple attributes in a marked content sequence ... 48

4.4.8 Processing of an object reference (OBJR) ... 48
4.4.8.1 XObjects .. 48
4.4.8.2 Annotations (other than of type Link and Widget) .. 48
4.4.8.3 Widget annotations .. 49

4.4.8.3.1 Mapping widget annotations to HTML.. 49
4.4.8.3.2 Widget annotation attributes ... 53

PDF Association

© 2025 PDF Association v

4.5 ECMAScript .. 54

4.6 Associated file processing .. 54
4.6.1 General.. 54
4.6.2 URL References .. 55
4.6.3 Media types .. 55
4.6.4 Handling media types .. 56

4.6.4.1 General .. 56
4.6.4.2 HTML ... 57
4.6.4.3 CSS .. 58
4.6.4.4 JavaScript ... 58
4.6.4.5 Images ... 59
4.6.4.6 SVG .. 59
4.6.4.7 MathML .. 59

ANNEX A: SECURITY IMPLICATIONS .. 61

ANNEX B: ECMASCRIPT DERIVATION GUIDANCE .. 62

ANNEX C: ENCRYPTED FILES HANDLING ... 65

ANNEX D: ACCESSIBILITY IMPLICATIONS .. 66

BIBLIOGRAPHY ... 67

© 2025 PDF Association 1

Introduction

Over the past 30 years PDF format has matured from a fixed-layout, page-description

format into a sophisticated foundation for deploying content. In 2025, PDF’s dominance in

the electronic document marketplace remains based on its fixed-layout heritage rather

than its capabilities as a rich content container.

In the modern world of small devices, IoT, and connected systems, where the interchange

and reuse of data are critical, it is reasonable to question the continued relevance of PDF’s

core value proposition. In particular, search engines, machine learning, and artificial

intelligence systems focus on accessing the information contained in documents over

visual representation. In other cases, document producers wish to deliver data in a form

that is suitable for automated processing while using a PDF file as a record for trust

purposes. End users want electronic documents that adapt smoothly to viewing on

diverse small devices.

By describing the algorithm that produces conforming HTML from a tagged PDF, this

document shows how well-tagged PDF documents, containing both traditional fixed-

layout content and the semantic structures leveraged by modern devices and software,

can be reliably and consistently reused as HTML to support better user experiences and

renew PDF’s value proposition.

HTML was chosen as a derivation target because HTML is consumed on all platforms and

supported by all major vendors. With small modifications, developers can use this

document to export content from well-tagged PDF to any format.

Author

Roman Toda, Foxit software

Contributors

Boris Doubrov, Dual Lab

Olaf Drümmer, callas software

Matthew Hardy, Adobe

Duff Johnson, PDF Association

Leonard Rosenthol, Adobe

PDF Association

© 2025 PDF Association 2

References

Well-Tagged PDF (WTPDF), Using Tagged PDF for Accessibility and Reuse in PDF 2.0,

https://pdfa.org/wtpdf/

ISO 14289-2:2024, Document management applications — Electronic document file

format enhancement for accessibility — Part 2: Use of ISO 32000-2 (PDF/UA-2)

ISO/TS 32005, Document management — Portable Document Format — PDF 1.7 and 2.0

structure namespace inclusion in ISO 32000-2

ISO 32000-2, Document management — Portable Document Format — Part 2: PDF 2.0

ISO/IEC 16262:2011, Information technology — Programming languages, their

environments and system software interfaces — ECMAScript language specification. (Also

known as JavaScript. Also available as ECMA-262 Edition 5.1 from ECMA)

ISO 21757-1, Document management – ECMAScript for PDF – Part 1: Use of ISO 32000-2

(PDF 2.0)

WHATWG, HTML Living Standard; https://html.spec.whatwg.org/multipage/

W3C, Digital Publishing WAI-ARIA Module 1.1 (DPUB-ARIA 1.1), W3C Recommendation, 12

June 2025; https://www.w3.org/TR/dpub-aria-1.1/

Cascading Style Sheets Snapshot 2024, W3C Group Note, 25 February 2025;

https://www.w3.org/TR/css-2024/

https://pdfa.org/wtpdf/
https://html.spec.whatwg.org/multipage/
https://www.w3.org/standards/types#REC
https://www.w3.org/TR/dpub-aria-1.1/
https://www.w3.org/standards/types/#NOTE
https://www.w3.org/TR/css-2024/

PDF Association

© 2025 PDF Association 3

1 Scope

This document describes an algorithm that produces conforming HTML from a well-

tagged PDF.

The best results are achieved when tagged pdf files are both authored (by users) and

created (by software) with derivation to HTML in mind. In particular, the semantic

structures defined in Tagged PDF are fundamental to realizing the author’s intent in the

derivation context. Their presence accurately reflects the author’s intent and is the

guarantor of an expected user experience.

This document is intended for the developer of software that:

◼ creates PDF files suitable for reuse

◼ interprets PDF contents for alternative display on mobile devices and/or HTML

environments

◼ embeds PDF viewing into HTML pages

◼ derives PDF content into HTML for automated processing

This document does not:

◼ Provide adaptations for deriving PDF into HTML sub-structures (e.g., within a <div>)

◼ Provide guidance for editing or modifying PDF files or HTML derived from PDF files

◼ Provide guidance for addressing the security implementations of derivation

◼ Substitute for best-practice documents focusing on accessibility (see “Annex D:

Accessibility implications”)

Note PDF files non-conformant with well-tagged PDF can be subject to the derivation to

HTML only when considering the distinctions between provisions defined in the WTPDF

and the structure in which the files are created. Otherwise, the results are unpredictable.

2 Terms and definitions

derivation

deterministic process of conversion of well-tagged files into a syntactically valid HTML file

derived HTML

HTML produced by processors operating in conformity with this document

derived CSS

default CSS produced by processors operating in conformity with this document

media type

a two-part identifier for file formats and format contents, also known as MIME type or

content type

PDF Association

© 2025 PDF Association 4

processor

any software, hardware, or other active agent that derives HTML from a well-tagged PDF

file

tagged PDF

PDF files that conform to ISO 32000-2, 14.8 “Tagged PDF”

well-tagged PDF

PDF files that conform with Well-Tagged PDF (WTPDF)

3 Notation

Key names are given in boldface, while values are given in italics.

In examples, pseudo-code, standard PDF structure element entries are given with angled

brackets (e.g., <Div>). The elements are not closed; instead, items contained within PDF

structure elements are enclosed by “{ }”. Structure element properties are indicated using

HTML conventions, e.g. “<P Lang="en-us">”. Standard brackets enclose structure

attributes representing one structure element owner attribute “()” written in HTML

conventions, including the O (owner) key.

Remarks or special characters are shown by [].

EXAMPLE

<Figure alt="PDF icon"> {

<Caption (O=Layout TextIndent=12.5) (O=CSS-3.00 color=red)>

{

 <P> [remark or notice]

 <P> {relevant content}

}

}

4 Algorithm for deriving HTML from well-tagged PDF

This algorithm establishes requirements for processors desiring consistent results from

the derivation of well-tagged PDF to HTML.

PDF Association

© 2025 PDF Association 5

4.1 Technical context

Use of this algorithm assumes substantial knowledge of ISO 32000-2 in general, and

subclauses 14.6 - 14.9 and 14.13 in particular, as well as HTML. Format requirements in

those specifications are not re-iterated here; knowledge of them is assumed.

4.2 Document handling

The processor shall initialize two output streams - one for the derived HTML and one for

the derived CSS. The HTML stream shall reference the CSS using conventional techniques.

NOTE 1 The processor may decide to store derived CSS in a separate file and use a link

element to define the reference to it in the derived HTML or embed the derived CSS stream

in the head element using style element.

The first line of the HTML document shall be “<!DOCTYPE html>”.

NOTE 2 While not required, a DOM-like approach for both HTML and CSS document

processing is recommended to allow for inline-modifications. However, the use of a

stream-based approach is also acceptable.

The next line shall contain an html element. If the Lang key is present in the PDF’s

document catalog dictionary, the lang attribute shall be added to the html element with

the value of the PDF document’s Lang entry.

EXAMPLE

<html lang="EN-US">

Deriving encrypted PDF files as defined by ISO 32000-2, 7.6 “Encryption” requires

authentication and respecting granted permissions. See “Annex C: Encrypted files

handling”.

4.2.1 Head
The next element created in the HTML output shall be a head element with three child

elements, title and meta.

The value of the title element shall be derived from the value of the dc:title metadata

value (if present) in the PDF’s document-level XMP. If the PDF does not have a dc:title

specified, the value of the title element in the HTML shall be the PDF’s filename without

the file extension.

All text shall be encoded using UTF-8, and a meta element with identified character

encoding shall be added.

A second meta element shall be added with the attributes of:

◼ name, whose value shall be viewport

◼ content, whose value shall be width=device-width, initial-scale=1

NOTE Using meta facilitates more responsive behavior on diverse devices.

PDF Association

© 2025 PDF Association 6

EXAMPLE

<!DOCTYPE html>

<html>

<head>

<title>A Document’s Title</title>

<meta charset="UTF-8"/>

<meta name="viewport" content="width=device-width, initial-

scale=1"/>

<link rel="stylesheet" type="text/css" href="pdf-derivation-

style.css"/>

</head>

...

</html>

4.2.2 Associated files associated with PDF document
The document catalog dictionary may have one or more associated files specified via an

AF entry (see ISO 32000-2, 14.13.3 “Associated files linked to the PDF document’s

catalog”). These AF entries shall be processed to build the head element of the HTML

output (see 4.6, “Associated file processing”).

NOTE This mechanism allows direct injection into the head element of an associated file of

type html with a value of Supplement in its AFRelationship entry. In such a use case, it is

therefore expected that the associated file is not a complete html file, but a fragment

(without head and body elements) that follows HTML syntax.

4.2.3 The ClassMap
If there exists a class map dictionary (as defined by the ClassMap key in the structure tree

root dictionary), then the processor shall iterate over all entries in that dictionary. For

each entry, the processor shall add a new entry in the derived CSS file using the key name

(prepended by a '.' after any escaping is expanded) as the CSS selector.

The value of each entry in the class map dictionary is an attribute object dictionary or an

array of attribute object dictionaries. The processor shall identify attributes that map to

CSS properties as described in 4.3.7, “Attributes”, and for each, create a CSS declaration in

the derived CSS using the dictionary key as the property and using the value of this key

(converted into a string using common methods) as the declared value.

If, after iterating over all attribute object dictionaries for a given key in the class map

dictionary, no appropriate attributes are located, the processor may either remove the

selector or provide an empty property list.

PDF Association

© 2025 PDF Association 7

NOTE The ClassMap key names used in PDF can use characters not allowed for html class attribute. It’s

important to use consistent conversion to html string objects when processing ClassMap as well as when

processing structure elements to make sure the class attribute is identified properly.

Handling the ClassMap in derivation is a two-step process. Attributes that represent

styling are derived into a CSS style sheet and later used as a class attribute of the derived

HTML element. Attributes that derive to HTML properties are output when processing PDF

structure elements as described in 4.3.6, “Structure element properties”. When an array of

attribute object dictionaries is present, the processor shall respect order and process only

selected attributes as described in 4.3.7, “Attributes”.

EXAMPLE

PDF specifying class map

1 0 obj

<<

/Type /StructTreeRoot

/K [...] % PDF structure element Kids

/IDTree ... % ID tree mapping element IDs to PDF structure

elements

/RoleMap ... % RoleMap for the default namespace

/ParentTree ... % Mapping for page content to parent PDF

structure elements

/ClassMap 2 0 R % ClassMap for all elements

>>

2 0 obj % ClassMap dictionary

<<

/HeadingStyle

<<

/O /CSS-2.00

/text-align /center

/color /red

/font-family (Arial, Helvetica, sans-serif)

/font-size (40px)

>>

/ParaStyle

PDF Association

© 2025 PDF Association 8

[

<<

/O /Layout

/Color [0 0 1] %blue

/BorderColor [0 1 0] %green

/TextAlign /Justify

>>

<<

/O /CSS-2.00

/color /red

/font-family ("Times New Roman", Times, serif)

/font-size (12px)

>>

]

>>

CSS output

.HeadingStyle {

text-align: center; color: red;

font-family: Arial, Helvetica, sans-serif;

font-size: 40px;

}

.ParaStyle {

font-family: "Times New Roman", Times, serif;

font-size: 12px;

color: red; /*coming from the CSS-2.00 attribute object

dictionary and overrides the Color attribute defined in the

Layout attribute object dictionary*/

border-color: green; /*coming from the Layout attribute object

dictionary*/

text-align: justify; /*coming from the Layout attribute object

dictionary*/}

4.2.4 Body
A body element shall be created immediately after the head element.

PDF Association

© 2025 PDF Association 9

The children of the body element are created as described in 4.3, “PDF structure

elements”.

If the PDF contains one or more elements in the Fields array of the document’s interactive

form dictionary, then a form element shall be created as a child of the body element with

an attribute, name, whose value shall be acroform.

EXAMPLE

<form name="acroform" id="acroform_id"></form>

All interactive form elements in the document are derived to corresponding HTML form

fields (see 4.4.8.3, “Widget annotations”). They shall refer to the acroform_id using a

“form” attribute of such HTML element in the derived HTML.

EXAMPLE

<input name="FirstName" form="acroform_id"/>

4.2.5 Pagination
HTML doesn’t have a concept of pagination. To allow users navigation based on a page,

and a better understanding of the same content in HTML, the processor shall create an

invisible nav HTML element with an attribute id whose value shall be PDF-PageNavigation

and role attribute with value doc-pagelist.

 Children of the nav element are links to page break elements identified when processing

content (see 4.4, “Processing of a content element”) with values representing page labels

for that specific pages (see ISO 32000-2, 12.4.2 “Page labels”)

EXAMPLE

<nav hidden id="PDF-PageNavigation" role="doc-pagelist">

I

II

1

2

</nav>

4.3 PDF structure elements

This subclause discusses the processing of PDF’s logical structure.

4.3.1 General
As described in ISO 32000-2, 14.7.2 “Structure hierarchy”, PDF structure elements are

constructed hierarchically, referred to as the structure tree. Processing of the structure

tree shall begin with the root element and proceed in a depth-first, pre-order traversal of

each element and its children.

PDF Association

© 2025 PDF Association 10

NOTE The processing order for nodes specifically indicates pre-order for the depth-first

traversal which is more explicit than logical content order.

4.3.2 Common processing
Any of the nodes in the structure tree may have one or more associated files specified via

the AF key in the PDF structure element’s dictionary. Conforming processors may use such

associated files to add information to the PDF structure element’s HTML output, or to

replace the PDF structure element’s HTML output (see 4.6, “Associated file processing”).

4.3.2.1 Processing PDF structure elements
This sub-clause defines how a processor shall process PDF structure elements. Situations

that require special treatment are defined in 4.3.4, “Ensuring valid HTML”.

4.3.2.2 When the PDF structure element does not use an explicit namespace
If the RoleMap entry is present in the structure tree root, and if it contains an entry

matching the structure type of the PDF structure element, the processor shall apply role

mapping – possibly transitively – until no further role mapping can be applied, as

described in ISO 32000-2, 14.8.6.2 “Role maps and namespaces”. Based on the resulting

structure type – which by definition has to be a PDF 1.7 standard structure type for any

tagged PDF – the processor shall select the corresponding HTML output (see 4.3.3, “

Mapping PDF structure element types to HTML elements”).

The processor shall add a data-pdf-se-type-original attribute with a value representing

the original PDF structure element type before role mapping to the HTML element. If more

than one role mapping is applied, the processor shall concatenate all PDF structure

element types in the data-pdf-se-type-original attribute separated by space characters.

NOTE Extra data attributes with PDF structure types are a unified way to preserve

information from PDF and might help HTML developers to understand and rely on the

original structure that would otherwise be lost during derivation.

A data-pdf-se-type attribute with the value of the PDF standard structure type’s key

name shall be added to the HTML element.

EXAMPLE

PDF RoleMap definition and a fragment of tagged pdf

1 0 obj

<<

/Type /StructTreeRoot

/RoleMap 2 0 R % RoleMap for the default namespace

. . .

>>

2 0 obj % RoleMap dictionary

PDF Association

© 2025 PDF Association 11

<<

/InlineShape /Shape

/Shape /Figure

>>

. . .

<InlineShape> {CONTENT}

HTML output

<img data-pdf-se-type="Figure" data-pdf-se-type-

original="InlineShape Shape" src="image.jpg"/>

4.3.2.3 When the PDF structure element uses an explicit namespace
If the PDF structure element uses either of the standard structure namespaces for PDF 1.7

or PDF 2.0 – as defined in ISO 32000-2, 14.8.6.1 “Namespaces for standard structure types

and attributes” – then based on its structure type, choose an output HTML element

according to “Table 1: Mapping the PDF standard structure element namespace structure

types to HTML”.

A data-pdf-se-type attribute with the value of the PDF standard structure type’s key

name shall be added to the HTML element.

If the PDF structure element uses the MathML namespace – as defined in ISO 32000-2,

14.8.6.3 “Other namespaces”– then the processor shall use its structure type directly as a

MathML element.

NOTE 1 Direct usage of structure type, which is the value of S key in the structure element

dictionary (see ISO 32000-2, “Table 355 - Entries in a structure element dictionary”),

requires conversion from the name type to a string.

If the PDF structure element uses the HTML namespace the processor may use its

structure type directly as the HTML element.

NOTE 2 Direct usage of the HTML namespace raises the same security concerns that apply

to HTML in general. See “Annex A: Security implications” for additional guidance.

If the PDF structure element uses any other namespace – transitively, if applicable – the

processor shall apply role mapping until encountering a structure type that belongs to

one of the sets of structure types described above – PDF 1.7, PDF 2.0, MathML or optionally

HTML – and then determine the HTML element to use accordingly.

NOTE 3 This implies that not all role mappings on a given element are processed if one of

the defined sets is encountered first.

4.3.3 Mapping PDF structure element types to HTML elements
Processors shall use the mappings given in “Table 1: Mapping the PDF standard structure

element namespace structure types to HTML” when determining which HTML element to

use when processing PDF structure element types within the PDF 1.7 and PDF 2.0 standard

PDF Association

© 2025 PDF Association 12

structure namespaces (see ISO 32000-2, 14.8.6.1 “Namespaces for standard structure

types and attributes”). In many cases a straightforward mapping from PDF to HTML

structure is inadequate for full conveyance of semantics. Clause 4.3.5, “Special cases”

provides processing requirements accommodating each of these cases.

Table 1: Mapping the PDF standard structure element namespace structure types to HTML

PDF 1.7 SSTs PDF 2.0 SSTs HTML element

Annot Annot -

See 4.4.8.2, “Annotations (other than of type Link

and Widget)”.

NOTE 1 This version of this document

does not address the Annot structure

element type.

Art – article

– Artifact -

NOTE 2 The Artifact structure elements

are not output, nor is any of its content or

descendent elements (see 4.3.5.9,

“NonStruct, Private and Artifact”).

– Aside aside

BibEntry – p

BlockQuote – blockquote

Caption Caption caption / figcaption / div

See 4.3.5.3, “Caption”.

Code – code / pre

See 4.3.5.12, “Code”

Document Document div

See 4.3.5.1, “Document”

PDF Association

© 2025 PDF Association 13

PDF 1.7 SSTs PDF 2.0 SSTs HTML element

– DocumentFragment div

Div Div div

– Em em

– FENote div / span / small

See 4.3.5.5, “Notes”

Figure Figure figure

See 4.3.5.6, “Figure”

Form Form See 4.3.5.11, “Forms”

Formula Formula div / span

See 4.3.5.7, “Formula”

H H -

Not supported; See 4.3.5.2, “Headings”

H1..H6 H1.. H6 h1..h6 / p

See 4.3.5.2, “Headings”

– H7..Hn p

Index – section

L L ul / ol / dl

See 4.3.7.4, “List standard structure attribute

owner” and 4.3.5.8, “L and TOC (lists)”

Lbl Lbl label / span / div / dt

See 4.3.5.4, “Lbl” and 4.3.7.4, “List standard

structure attribute owner”

PDF Association

© 2025 PDF Association 14

PDF 1.7 SSTs PDF 2.0 SSTs HTML element

LBody LBody div / dd

See 4.3.7.4, “List standard structure attribute

owner”; see 4.3.5.8.2, “L as description list” for a

description list.

style="display:inline;">

LI LI li / div

See 4.3.7.4, “List standard structure attribute

owner”; see 4.3.5.8.2, “L as description list” for a

description list.

Link Link a

NonStruct NonStruct - / div

NOTE 3 The structure element is

processed only if contains attributes.

Content it contains is processed normally.

See 4.3.5.9, “NonStruct, Private and

Artifact”.

Note – -

NOTE 4 Note structure element are not allowed in

the conforming file. See FENote for further

information on deriving footnotes and endnotes

P P p

Part Part div

Private - -

NOTE 5 The processing of structure

element and its children is

implementation specific See 4.3.5.9,

“NonStruct, Private and Artifact”.

Quote – q

Reference - a

RB RB rb

PDF Association

© 2025 PDF Association 15

PDF 1.7 SSTs PDF 2.0 SSTs HTML element

RP RP rp

RT RT rt

Ruby Ruby ruby

Sect Sect section

Span Span span

– Strong strong

– Sub span

Table Table table

TBody TBody tbody

TD TD td

TFoot TFoot tfoot

TH TH th

THead THead thead

– Title div

TOC – ol

TOCI – li

TR TR tr

Warichu Warichu span

WT WT span

WP WP span

PDF Association

© 2025 PDF Association 16

4.3.4 Ensuring valid HTML
PDF and HTML use different methods of expressing certain structures and restrict these

structures in different ways.

To achieve interoperable reuse of PDF content in syntactically valid HTML, the derivation

process has to account for these differences.

EXAMPLE

PDF allows the following as a valid nesting of standard structure elements:

<Table>{

<TR>{

<TH> {

<H1> { Heading inside TH}

}

}

}

As shown below, direct derivation of the above example would not produce valid HTML

because the h1 element is not allowed as a descendant of the th element.

HTML output

<table>

<tr>

<th>

<h1>Heading inside TH</h1>

</th>

</tr>

</table>

PDF allows even more complex structures that don’t have a semantically equivalent

expression in HTML.

EXAMPLE

PDF allows tables to include captions which may themselves include tables:

<Table>{

<TR> {..}

<Caption> {

<Table> {..}

}

PDF Association

© 2025 PDF Association 17

}

Whereas in HTML, even though the caption element is allowed as a descendant of a table

element, the caption is required to be the first table element and cannot include another

table as its descendant.

HTML output

<table>

<tr>..</tr>

<caption>

<table>..</table>

</caption>

</table>

ISO 32000-2, 14.8.4.2 “Nesting of standard structure elements” defines rules that apply to

standard PDF structure elements and the context in which they can be used.

Additionally, PDF structure elements with a type of Link or Form are special cases

according to 4.3.5.10, “Links and references” and 4.3.5.11, “Forms”.

4.3.5 Special cases

4.3.5.1 Document

The PDF document can contain multiple Document structure elements. This usually

happens when PDF file is composed of multiple semantically different documents being

merged.

The processor may derive Document structure elements into div elements and keep

combined documents in a single html.

For a better user experience when dealing with large files, the processor can run separate

derivations on each Document structure element producing a set of separate html files.

Those files will be referenced from the main html file using link element.

4.3.5.2 Headings

4.3.5.2.1 Explicitly numbered heading

The use of H structure element is not allowed as per Well-Tagged PDF. If present in pdf file,

it shall be mapped to p.

HTML does not directly include support for heading levels above h6, which means that H7

and beyond PDF structure element types should typically map to p. To correctly convey

the intended semantics, the document creator may use WAI-ARIA attributes. Processors

may output such attributes automatically (even if not present in the document).

EXAMPLE

PDF

PDF Association

© 2025 PDF Association 18

<H7 (O=ARIA-1.1 role=heading aria-level=7) > { Heading 7 }

HTML output

<p role="heading" aria-level="7">Heading 7</p>

4.3.5.2.2 Headings in Tables

If any heading structure element (H1..Hn) is a child of a TH structure element then that

heading structure element shall be mapped to an HTML p element:

EXAMPLE

PDF

<Table>{

<TR>{

<TH> {

<H1> { Heading inside TH}

}

}

}

HTML output

<table>

<tr>

<th>

<p>Heading inside TH</p>

</th>

</tr>

</table>

If a Sect structure element is the child of a TH structure element, then all such Sect

structure elements shall be mapped to div in the output HTML.

EXAMPLE

PDF

<Table>{

<TR>{

<TH> {

<Sect> {

 <Sect> {

<L> { list}

PDF Association

© 2025 PDF Association 19

}

P {.. }

}

}

}

}

HTML output

<table>

<tr>

<th>

<div>

<div>

 …

</div>

<p> … </p>

</div>

</th>

</tr>

</table>

4.3.5.3 Caption

4.3.5.3.1 Captions of Figures

If a Caption structure element is a direct child of a Figure structure element, then it shall

be mapped to the HTML element figcaption.

4.3.5.3.2 Captions of Tables

If a Caption structure element is a direct child of a Table structure element, then the

output HTML element shall be caption, and it shall become the first child of the

corresponding HTML table element.

If, using this method, a caption element containing a table or ol/ul /dl becomes a child of

another table element - to avoid invalid HTML, a processor may either:

◼ Move the table or ol/ul/dl sub-structure from within the Caption to immediately

follow the parent table. If not allowed to be nested there continue to move up in the

tree, or

◼ derive all PDF structure elements to span if visual representation is more critical.

PDF Association

© 2025 PDF Association 20

EXAMPLE

Valid PDF structure without a semantic equivalent in HTML

<Part> {

<Table> {

<Caption> {

Some text

<Table> { [table inserted into the caption] }

}

<TR> {}

}

}

HTML output

<div>

<table>

 <caption>

 Some Text

 </caption>

 <tr> </tr>

 </table>

<table> <!-- table inserted into the caption --> </table>

</div>

4.3.5.3.3 Captions of Lists

If a Caption structure element is a direct child of a L or TOC structure element, then it’s

derived into div and shall be moved outside of the derived parent element.

EXAMPLE

<Part> {

<L> {

<Caption> {

Some text

}

 { … }

}

}

PDF Association

© 2025 PDF Association 21

HTML output

<div>

 <div> Some text </div>

…

</div>

4.3.5.4 Lbl

4.3.5.4.1 Lbl within a LI (list item)

The presence of an Lbl element in an LI indicates that the list label has explicit meaning. If

an LI omits an Lbl, then the list marker is defined by the ListNumbering attribute and

may be generated automatically during attribute derivation. Preservation of an explicitly

provided label requires specific CSS adjustments; therefore, the following approach is

recommended:

If deriving L to ol or ul, and if a child LI structure element contains a Lbl structure element

as its first child, then:

◼ the ul or ol element derived from the parent L’s structure element has an additional

style attribute with value list-style-type:none. The processor ignores redefinition of

list-style-type attribute provided through the presence of CSS attributes as defined

in 4.3.7.9, “CSS”

◼ Lbl is mapped to span if it has only textual content (no other block level child

structure elements)

◼ Lbl is mapped to div, if it contains other block level structure elements

If deriving L to dl, the Lbl structure element is derived to a dt element.

When deriving Lbl in lists, the processor should ignore the presence of the Placement

attribute.

NOTE Introducing an additional span or div element for the label may affect formatting.

Processors typically compensate by applying additional styling to maintain the intended

layout, or by analyzing the semantic nature of the Lbl—for example, whether it contains

textual content, links, or other meaningful elements—and adjusting their behavior

accordingly.

EXAMPLE

PDF

<L> {

PDF Association

© 2025 PDF Association 22

 {

 <Lbl> { - }

 <LBody> { text 1}

}

}

HTML output

<ul style="list-style-type:none;">

-<div style="display:inline;">text 1</div>

4.3.5.4.2 Lbl within a Form

If a Lbl structure element is contained in a Form structure element, then:

◼ Lbl is mapped to div if it contains one or more of the following structure elements as

a direct child: Form, Figure, Formula or Caption

Lbl is mapped to label otherwise. If the PDF 2.0 namespace is used, an additional for

attribute shall be added to the HTML label element (see 4.3.5.11.1, “Form field

processing”).

4.3.5.4.3 Lbl as a child of Hn, Caption, TOCI

If a Lbl structure element is a child of a Hn, Caption or TOCI structure element, then:

◼ Lbl is mapped to span if it has only textual content (no other block level child

structure elements)

◼ Lbl is mapped to div, if it contains other block level structure elements

4.3.5.4.4 Lbl as a child of other elements

If the Lbl structure element is a child of other elements it is derived to span element.

4.3.5.4.5 Aria attribute on Lbl

To convey the semantics of the Lbl element, the processor may add aria-label attribute

with textual information identifying the label, provided that such an ARIA attribute is not

already present (see 4.3.7.10, “ARIA roles”).

EXAMPLE

PDF

<H1> {

<Lbl> {1.}

PDF Association

© 2025 PDF Association 23

Introduction

}

HTML output

<h1>

1.

Introduction

</h1>

4.3.5.5 Notes

HTML doesn’t have a specific element for representing note semantics. A similar effect is

usually achieved using css styling.

FENote structure element is derived to span if it’s an inline structure element and to div

otherwise.

NOTE 1 Relying solely on the presence of the Placement attribute is not the best practice.

The category of an element can be either an inline level element or a block level element,

depending on its context. For more information, refer to ISO 32000-2, 14.8.3, and 14.8.4.1

To avoid invalid HTML, a processor may also remove the FENote element (with all its

children) from its position, then traverse up the tree to find the first parent that allows

inclusion of a derived div or span element. Once such a parent is found, insert the

element as a child of that parent, placing it at the correct position in the child order—

specifically as a sibling of the original (invalid) parent.

Processors may use a specific HTML element to represent notes, such as the small or footer

elements.

Additionally, the value of the NoteType attribute defined in Well-Tagged PDF (WTPDF),

8.2.5.14 Footnotes and Endnotes (FENote) is derived into the data-pdf-FENoteType attribute.

The Well-Tagged specification PDF mandates the presence of Ref entry on FENote, and the

processor may use the connection between note and content to generate an additional a

element to allow navigation.

4.3.5.6 Figure

If a Figure structure element is a direct or indirect child of one of Sub, P, Hn, Em, Strong,

or Span PDF structure elements it shall not be mapped to any HTML element and the

processor shall continue with its direct children, which shall themselves be mapped to

span or a. Attributes of the Figure structure element shall be included in the html element

identifying content and all respective span or a elements while properties shall only be

included in the html element identifying content.

NOTE 1 Requirement for the indirect child means that inline links containing figures are

properly derived.

PDF Association

© 2025 PDF Association 24

NOTE 2 Figures as children of P structure element containing links that enclose content are

derived into p HTML element containing a HTML element which contains img. The

requirements for the properties of Figure structure element are applied transitively to img.

Therefore, Alt property is derived to alt of the identified img.

EXAMPLE 1

PDF

<P> {

<Figure Alt="six-point star" (O=Layout BorderColor=[0 1 0])>

{

 <Caption> {Figure Caption}

CONTENT [The actual image or illustration converted to

star.jpg during derivation]

}

}

HTML output

<p>

Figure Caption

<img alt="six-point star"

style="border-color:green;"

src="star.jpg"/>

</p>

 EXAMPLE 2

PDF

<P> {

<Figure Alt="six-point star" (O=Layout BorderColor=[0 1 0])>

{

 <Caption> {Figure Caption}

<Link> {

 OBJR [link annotation]

CONTENT [The actual image or illustration

converted to star.jpg during derivation]

}

}

}

HTML output

PDF Association

© 2025 PDF Association 25

<p>

Figure Caption

<img alt="six-point star" style="border-

color:green;"src="star.jpg"/>

</p>

4.3.5.7 Formula
If a Formula structure element is an inline structure element, then it shall be mapped to a

span element. Otherwise, it shall be mapped to div.

If a Formula structure element contains a math structure element defined in MathML

namespace as a direct child (as per 4.3.2.3, “When the PDF structure element uses an

explicit namespace”), then associated files as defined in 4.6, “Associated file processing”

are not processed.

EXAMPLE 1

Math formula represented in the MathML namespace

PDF

<P> {

<Formula> {

<math> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>=</mo>

<mi>c</mi> </math>

}

}

HTML output

<p> <math> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>=</mo>

<mi>c</mi> </math> </p>

EXAMPLE 2

Chemical formula

PDF

<P> {

<Formula> {

CO

PDF Association

© 2025 PDF Association 26

2

+ H

2

O = H

2

CO

3

}

}

HTML output

<p> CO₂ + H₂O = H₂CO₃

 </p>

4.3.5.8 L and TOC (lists)

4.3.5.8.1 List within list

If an L (or TOC) structure element is a direct child of a L (or TOC) structure element, then

the child L (or TOC) element shall be output to HTML as the direct child of a newly created

li element containing a style attribute with the value “list-style-type: none”

EXAMPLE 1

PDF

<L (O=List ListNumbering=Ordered)> {

<L> {

 {Item 1.1}

}

 {Item 2}

}

HTML output

<li style="list-style-type: none;">

 Item 1.1

PDF Association

© 2025 PDF Association 27

Item 2

EXAMPLE 2

PDF

<TOC> {

<Caption> {Table of Content}

<TOC> {

 <Caption> {Tables}

 <TOCI> {Table 1}

 <TOCI> {Table 2}

}

}

HTML output

 <div> Table of Content </div>

<li style="list-style-type: none;">

 <div> Tables </div>

 Table 1

 Table 2

4.3.5.8.2 L as description list

If an L structure element is derived to dl (see 4.3.7.4, “List standard structure attribute

owner”) then its child elements shall be derived as follows:

◼ LI to div

◼ Lbl to dt

◼ LBody to dd

EXAMPLE

PDF Association

© 2025 PDF Association 28

PDF

<L (O=List ListNumbering=Description)> {

 {

 <Lbl> { First}

 <LBody> { the first item}

 }

 {

 <Lbl> {Second}

 <LBody> {the second item}

 }

}

HTML output

<dl>

 <div>

 <dt>First</dt>

 <dd>the first item</dd>

 </div>

 <div>

 <dt>Second</dt>

 <dd>the second item</dd>

 </div>

</dl>

4.3.5.8.3 L within P or Sub

If an L structure element is a direct child of a P or a Sub structure elements, the processor

shall close all the HTML elements until the first parent allows nested ol or ul or dl

elements. The derived ol or ul or dl will become a child of the parent, thereafter, repeating

the same structure with the first sibling of the L element.

EXAMPLE

PDF

<Part> {

 <P> {

 <Sub> {

 Actual content before the list

PDF Association

© 2025 PDF Association 29

<L (O=List ListNumbering=Ordered)>

Actual content after the list

}

}

}

HTML output

<div>

<p>Actual content before the list</p>

. . .

<p>Actual content after the list</p>

</div>

4.3.5.9 NonStruct, Private and Artifact

If PDF structure elements of type NonStruct contain any HTML or CSS attributes, then

they shall be mapped to HTML div element. Otherwise, the NonStruct structure element

shall not be output to HTML, but the content they enclose (including child elements, if

any) shall be processed as though it were contained in the NonStruct structure element’s

parent structure element directly.

PDF structure elements of type Private or of type Artifact shall not be output, nor shall

any of their content or descendant elements.

4.3.5.10 Links and references

If the standard PDF structure element type is Link or Reference, then the HTML element

shall be considered as a, (i.e., an HTML anchor element). The processor shall identify the

destination from the annotation dictionary of the first object reference (OBJR) associated

with an annotation with a Subtype key whose value is Link

If the annotation dictionary has a Dest key, the value of href attribute for the HTML shall

come from the destination according to 4.3.5.10.1, “Destination”.

If the annotation dictionary has an A key, then the href attribute of the HTML shall be

determined based on action type according to 4.3.5.10.2, “URI action” or 4.3.5.10.3, “

GoTo action”.

If a Link structure element is a direct child of a Reference structure element, then the

processor shall output only one HTML element with href set from the annotation

dictionary represented by the Link.

Suppose a Link or Reference structure element doesn’t contain an annotation object. In

that case, the processor may use the Ref entry, if present, to establish a connection

between other content and define href accordingly or omit the href entry. See 4.3.6.6,

“Ref entry”. Alternatively, the target can be identified from the enclosed content

PDF Association

© 2025 PDF Association 30

EXAMPLE

PDF

<P> { This is link

<Link> { www.pdfa.org }

}

HTML output

<p> This is link

 www.pdfa.org

</p>

4.3.5.10.1 Destination

For a structured destination (ISO 32000-2, 12.3.2.3 “Structure destinations”), the id from

that destination as created according to 4.3.6, “Structure element properties” shall be

used as the fragment identifier in the href attribute of the HTML element.

For explicit destination (ISO 32000-2, 12.3.2.2 “Explicit destinations”), the processor shall

identify the first element on the destination page (see 4.4, “Processing of a content

element”) and use id from that element as created according to 4.3.6, “Structure element

properties” shall be used as a href attribute of HTML element. Processors may add

support for changing the particular view of the document by supporting various

destination types in an implementation-dependent manner.

4.3.5.10.2 URI action

If the annotation dictionary has an A key, and its value is an action of type URI, then the

value of the URI key shall be used as href attribute of HTML element.

4.3.5.10.3 GoTo action

If the annotation dictionary has an A key, and its value is an action of type GoTo, then the

href attribute of the HTML shall be determined from the structure destination defined by

SD key of the action dictionary as defined by 4.3.5.10.1, “Destination”. If SD key is not

present, then the value of the D key shall be used.

4.3.5.11 Forms

Form structure elements representing interactive fields are derived according to

4.3.5.11.1, “Form field processing”.

When Form structure element doesn’t represent an interactive form field but only conveys

visual representation if is derived according to 4.3.5.11.3, “Non-interactive forms”.

NOTE 1 HTML requires that form fields are always descendants of a form element, whereas

there is no notion of an equivalent structure element in PDF 2.0 standard structure

namespaces. Consequently, the HTML form element is inserted in a generic fashion that

ensures that any PDF structure element of type Form will always be derived to an

equivalent HTML form field that is a descendant of a form element.

http://www.pdfa.org/
http://www.pdfa.org/

PDF Association

© 2025 PDF Association 31

NOTE 2 It is possible to use PDF structure elements and attributes in the HTML namespace

to define forms and form fields that translate more directly into HTML elements and

element structures. If form-related PDF structure elements from the PDF 2.0 standard

structure namespace on one side and from the HTML namespace on the other side were

mixed inside the same document, the conversion result could be inconsistent.

4.3.5.11.1 Form field processing

If a structure element of type Form contains one object reference (OBJR) to a widget

annotation, the derivation algorithm is based on 4.4.8.3, “Widget annotations”, and other

content inside the PDF structure element of type Form, with special handling of content

inside PDF structure elements of type Lbl.

If a PDF structure element of type Form has descendants that are structure elements of

type Lbl, these Lbl structure elements shall be created as label elements, as defined in

4.3.2.1, “Processing PDF structure elements”. A for attribute shall be added to each label

element, whose value shall be the same as that of the id attribute of the HTML form field

element created according to 4.4.8.3, “Widget annotations”.

EXAMPLE

PDF

<Form> {

<Lbl>{Last name:}

OBJR [widget annotation of single line text field]

}

HTML output

<label for="bd43-05d-11e7">Last name:</label>

<input id="bd43-05d-11e7" type="text" name="lastname"

form="acroform_id">

4.3.5.11.2 Form field processing for PDF structure elements from the HTML namespace

When using form field-related structure elements from the HTML namespace, no

processing as defined in 4.4.8.3, “Widget annotations” shall be carried out. All attributes

necessary for each HTML form field must be present as structure attributes in the HTML

namespace.

When using form field-related structure elements from the HTML namespace, structure

elements of type form shall be present as necessary to ensure that all form fields in the

derived HTML are descendants of a form element as required by HTML.

4.3.5.11.3 Non-interactive forms

If a Form structure element represents a non-interactive form and contains PrintField

attribute owner (as defined in ISO 32000-2 14.8.5.6 “PrintField attributes”) is derived into

figure element and its children are processed based on 4.4, “Processing of a content

element”.

PDF Association

© 2025 PDF Association 32

In the absence of an alternate description, the processor may use the value of Role and

Checked attributes to generate human-readable text that is used as alt attribute of the

derived element.

4.3.5.12 Code

In PDF, the Code structure element represents either a single line of code or a block that is

further divided into lines using Sub structure element. In HTML code element always

represents a single phrase or single line of code, and multiple lines are recommended to

be wrapped in pre element.

If the standard PDF structure element type Code contains Sub structure element as a

direct child, then it is derived into pre HTML element, and Sub structure elements shall be

mapped to code elements; otherwise, the Code structure element shall be mapped to

code.

EXAMPLE 1

PDF

<Code> {

<Sub>{ x = 3 }

<Sub>{ y = 7 }

<Sub>{ print(x + y)}

}

HTML output

<pre>

<code> x = 3 </code>

<code> y = 7 </code>

<code> print(x + y) </code></pre>

EXAMPLE 2

PDF

<P> {

The <Code>{print} function shows a message on the screen.

}

HTML output

<p>

The <code>print</code> function shows a message on the

screen.

PDF Association

© 2025 PDF Association 33

 </p>

4.3.6 Structure element properties
Structure element properties convey data whose processing is critical to the complete

and accurate conveyance of semantic meaning.

NOTE It is important to note that well-tagged pdf files authored for deriving into HTML can

override values of structure element properties by the presence of html and css attribute

owners that are in no way interpreted in standard pdf rendering. It is the author’s

responsibility to make sure that the derived HTML represents the content the way the

author intended. It is also a valid use case to provide different visual and interactive

experiences when consuming pdf in the traditional way and as derived HTML.

4.3.6.1 General

If the structure element dictionary contains an ID entry, its value shall be used as the value

of the id attribute on the HTML element.

If a structured destination (see ISO 32000-2, 12.3.2.3 “Structured destinations”) references

the structure element dictionary and does not contain an ID entry, then a unique identifier

value (generated in an implementation-dependent manner) shall be used as the value of

the id attribute on the HTML element.

NOTE 1 This id is used when the Link annotation with the structure destination is

processed.

If the PDF structure element has any classes of attributes (via the C key in the structure

element dictionary), then those classes shall be used as the value for an attribute class on

the HTML element. If C is an array, then the value of the class attribute shall be

constructed as a concatenation of classes separated by a space character. Additionally,

the processor shall output attributes that map to HTML properties associated with the

classes according to 4.3.7.2, “Deriving structure attributes to HTML attributes”.

If the PDF structure element has an A key in its structure element dictionary, then its

attributes shall be handled as described in 4.3.7, “Attributes”, and shall be output as

attributes of the HTML element or as inline styling properties.

NOTE 2 It is important to process classes of attributes before the attributes. ISO 32000-2

14.7.6.2 “Attribute classes” requires that if both the A and C entries are present and a given

attribute is specified by both, the one specified by the A entry takes precedence.

4.3.6.2 Lang

If the structure element dictionary contains a Lang entry and if the entry’s value is not an

empty string, then its value shall be used as the value of the lang attribute on the HTML

element.

4.3.6.3 Replacement text
If the structure element dictionary has an ActualText key (see ISO 32000-2, 14.9.4

“Replacement text”), its value shall be used as the content of the HTML element, and the

children of the PDF structure element shall be ignored.

PDF Association

© 2025 PDF Association 34

EXAMPLE 1

PDF

<P> {

Dru{k-}ker

}

HTML output

<p>Drucker</p>

NOTE the span element in derived HTML is only required if original Span element contains

additional attributes or properties

EXAMPLE 2

PDF

<P> {

<Formula Lang="de" ActualText="Der Satz des Pythagoras">{

 $…$

}

}

HTML output

<p>

 Der Satz des Pythagoras

<!-- span is derived from Formula structure element -->

 </p>

4.3.6.4 Alternate description
When processing PDF structure elements of type Figure, whose structure element

dictionary has an Alt key (see ISO 32000-2, 14.9.3 “Alternate descriptions”), the Alt

property shall only be included in the HTML element identifying content as defined in

4.3.5.6, “Figure”.

When an Alt property is present on a Formula structure element or a math structure

element (in the MathML namespace), its value shall be used as the alttext attribute of the

derived math element.

EXAMPLE

PDF

<Figure Alt="six-point star"> {

PDF Association

© 2025 PDF Association 35

CONTENT [The actual image or illustration converted to

star.jpg during derivation]

}

HTML output

<figure> </figure>

4.3.6.5 Expansion text

If the structure element dictionary has an E key that is not an empty string (see ISO 32000-

2, 14.9.5 “Expansion of abbreviations and acronyms”), then the HTML element shall be

abbr whose contents are the contents of the PDF structure element and a title attribute

whose value is the UTF-8 encoded value of the expansion text.

EXAMPLE 1

PDF

<P> {

 {Dr.}

 Jones

}

HTML output

<p><abbr title="Doctor">Dr.</abbr> Jones </p>

When multiple properties are present, they should all be handled in the order of

importance

EXAMPLE 2

PDF

<P> {

<Figure ActualText="Dr." E="Doctor" Alt="Fancy drawing of

Dr.">

Jones

}

HTML output

<p><abbr title="Doctor">Dr.</abbr> Jones</p>

PDF Association

© 2025 PDF Association 36

4.3.6.6 Ref entry

Well-Tagged PDF specification recommends the use of Ref entry to more closely associate

two structure elements and to provide referential information between source and target

structure elements.

The processor may choose to use this information and provide features that would allow

consumers to benefit from highlighting such an association in an implementation-

dependent way.

EXAMPLE: Preview popup of a destination while hovering over an element with Ref entry,

with the ability to navigate to the target element

4.3.7 Attributes
Additional information is often associated with individual PDF structure elements through

the use of structure attributes. In some cases, the presence of a specific attribute changes

the selected html element, but in most cases, PDF structure element attributes are

mapped to HTML attributes or CSS properties.

4.3.7.1 General
Only those standard structure attributes specifically referenced in this document shall be

processed. Additional format-specific attributes and owners may be present, and the

processor may output them.

The O key (see ISO 32000-2, “Table 376 - Standard structure attribute owners”) and its

value shall not be output. If the O key has a corresponding value of NSO, then the NS key
and its value shall only be processed if the NS key references the same Namespace
Object as the target element. In this case, the attribute should be interpreted as an
attribute in no-namespace with the name given by the attribute key.

Whenever an array of attributes is defined, the processor shall process attributes in the

following sequence:

1. User Properties

2. List attribute owner

3. Table attribute owner

4. Layout attribute owner

5. PrintField attribute owner

6. HTML attribute owner

7. CSS attribute owner

8. ARIA attribute owner

9. NSO with MathML namespace

NOTE 1 The sequence guarantees that the most significant attributes are processed last.

Well-tagged pdf files authored for derivation into HTML interpret HTML and CSS

attributes with higher priority than, for example, Layout attributes or structure

element properties. That is intentional and gives the author the ability not just to

PDF Association

© 2025 PDF Association 37

enrich the pdf with html specific constructs, but also to override the existing

aspects of pdf focused on traditional pdf consumption in fixed layout devices or

with AT with more reliable html tags, attributes, and css properties.

When deriving attribute values from PDF to HTML or CSS, the necessary conversion

to lowercase shall be applied, and only those valid in html shall be processed.

NOTE 2 If an attribute isn’t present on a structure element, it may either be inherited when

the inheritance is applicable for such attribute or considered as having a default value. The

CSS and HTML attributes are not interacting with other attribute owners. It is therefore

recommended not to rely on inheritance or default values for attributes and explicitly

define attributes on structure elements.

4.3.7.2 Deriving structure attributes to HTML attributes
For each PDF structure element attribute mapping to an HTML attribute, the processor

shall use the dictionary key as the name of an attribute on the HTML element and the

value of the key (converted into a string using common methods) as the value of that

attribute.

It is expected that the representation of boolean HTML attributes matches the

requirements from HTML, and values provided in PDF are either an empty string or a value

that is an ASCII case-insensitive match for the attribute's canonical name, with no leading

or trailing whitespace.

EXAMPLE

PDF

<Form (O=HTML-5.00 disabled=disabled) > { OBJR }

HTML output

<input form="acroform_id" disabled=disabled/>

4.3.7.3 Deriving structure attributes to CSS properties

For each attribute derived to a CSS property, the processor shall create a CSS declaration

using the dictionary key as the property and the value of the key (converted into a string

using common methods) as the property value.

A style attribute for the HTML element shall be created, and all CSS declarations in the

current PDF structure element shall be concatenated into a string, delimited by

semicolons as necessary, and the string shall be used as the value of the style attribute.

4.3.7.4 List standard structure attribute owner
If the list is ordered, the L shall be derived to ol. If the value of the ListNumbering

attribute is Description, the L shall be derived to dl (see 4.3.5.8.2, “L as description list”),

otherwise, it shall be derived to ul.

https://infra.spec.whatwg.org/#ascii-case-insensitive

PDF Association

© 2025 PDF Association 38

The processor may decide to derive other values of the ListNumbering attribute to the

list-style-type CSS property if list-style-type is not already present on a structure

element as a CSS owner attribute (see 4.3.7.9, “CSS”). In particular

values: Disc, Circle, Square can be derived to CSS values disc, circle, square for unordered

lists and value Decimal, UpperRoman, LowerRoman, UpperAlpha, LowerAlpha can be

derived to the corresponding CSS values decimal, upper-roman, lower-roman, upper-

alpha, lower-alpha for ordered lists.

The attributes ContinuedList and ContinuedFrom shall not be processed into HTML

unless an implementation is provided (e.g., equivalent CSS or JavaScript) to

accommodate their semantics.

NOTE To achieve equivalent effects in an HTML, the author can provide equivalent CSS or

JavaScript mechanisms.

4.3.7.5 Table standard structure attribute owner
“Table 2: Mapping Table structure type attribute owners to HTML attributes” shows the

mapping from the standard table attributes to HTML attributes that shall be used by the

processor when deriving Table structure element types to corresponding html elements.

“Table 3: Mapping standard layout attributes of Table structure elements to CSS

properties” shows the mapping from the standard layout attributes belonging to Table

structure element to CSS properties that shall be used by the processor when deriving

Table structure element types to corresponding html elements.

Table attributes not listed in Table 2 or Table 3 shall not be processed.

Table 2: Mapping Table structure type attribute owners to HTML attributes

Standard Table attribute HTML attribute (output)

ColSpan colspan

RowSpan rowspan

Headers headers

NOTE The mapping of the Headers attribute relies

on the fact, that existing ID attributes for PDF

structure elements are mapped to the id attribute of

the th or td elements derived from TH or TD

structure elements.

Scope scope

Short abbr

PDF Association

© 2025 PDF Association 39

Table 3: Mapping standard layout attributes of Table structure elements to CSS properties

Standard Table attribute CSS property (output)

TBorderStyle border-style

Apply any necessary conversion to lowercase

TPadding padding

Apply any necessary conversion to pixels

EXAMPLE

PDF

<Table> {

 <TR> {

 <TH (O=Table RowSpan=2 TBorderStyle=Dotted)> { Age }

 <TH (O=Table ColSpan=2 TBorderStyle=Dotted)> { Names}

}

<TR> {

<TH> { John }

<TH> { Bob }

}

<TR> {

<TH> { 25-30 }

<TD> { 100 }

<TD> { 500 }

}

}

HTML output

<table>

<tr>

<th style="border-style:dotted; rowspan=2">Age</th>

<th style="border-style:dotted; colspan=2">Names</th>

</tr>

PDF Association

© 2025 PDF Association 40

<tr><th>John</th><th>Bob</th></tr>

<tr><th>25-30</th><td>100</td><td>500</td></tr>

</table>

4.3.7.6 Layout standard structure attribute owner

The TextPosition attribute specifies whether a PDF structure element is subscript or

superscript.

• If the TextPosition attribute is Sup, the additional sup HTML element shall be

added as a direct child of the derived element.

• If the TextPosition attribute is Sub, the additional sub HTML element shall be

added as a direct child of the derived element

“Table 4: Mapping layout standard structure attribute owner to CSS properties” shows the

mapping from the standard layout attribute to CSS properties that shall be used by the

processor when deriving PDF structure element types to corresponding HTML elements.

Layout attributes not listed in Table 4 shall not be processed.

Table 4: Mapping layout standard structure attribute owner to CSS properties

Standard Layout

attribute

CSS property (output)

Placement If value is Block or Inline, the derived CSS property is display

and values are block or inline

If value is Before, Start or End, the derived CSS property is

float with values left or right

WritingMode writing-mode

Apply any necessary conversion to CSS property values

from PDF names

BackgroundColor background-color

Apply any necessary conversion to HTMLRGB values

BorderColor border-color

Apply any necessary conversion to HTML RGB values

PDF Association

© 2025 PDF Association 41

Standard Layout

attribute

CSS property (output)

BorderStyle border-style

Apply any necessary conversion to lowercase

BorderThickness border-width

Apply any necessary conversion to pixels

Padding padding

Apply any necessary conversion to pixels

Color color

Apply any necessary conversion to HTML RGB values

SpaceBefore (interpreted)

There is no equivalent CSS property; the processor should

use a combination of display and margin-top properties to

simulate the expected behavior

SpaceAfter (interpreted)

There is no equivalent CSS property; the processor should

use a combination of display and margin-bottom properties

to simulate the expected behavior

StartIndent (interpreted)

There is no equivalent CSS property; the processor should

use a combination of display and margin-left properties to

simulate the expected behavior

EndIndent (interpreted)

There is no equivalent CSS property; the processor should

use a combination of display and margin-right properties to

simulate the expected behavior

PDF Association

© 2025 PDF Association 42

Standard Layout

attribute

CSS property (output)

TextIndent text-indent

Apply any necessary conversion to pixels

TextAlign text-align

Apply necessary conversion to CSS property values from

PDF names

TPadding padding

Apply any necessary conversion to pixels

LineHeight line-height

Apply necessary conversion to CSS property values from

PDF names

BaselineShift baseline-shift

Apply any necessary conversion to pixels

TextDecorationColor text-decoration-color

Apply necessary conversion to HTML RGB values

TextDecorationThickness There is no equivalent CSS property, therefore the

processor should use other properties (e.g., border-width)

to achieve the same visual and semantic expression

TextDecorationType text-decoration

A LineThrough value shall be derived to line-through

Apply necessary conversion to lowercase

RubyAlign ruby-align

Apply necessary conversion to CSS property values from

PDF names

PDF Association

© 2025 PDF Association 43

Standard Layout

attribute

CSS property (output)

RubyPosition ruby-position

Apply necessary conversion to CSS property values from

PDF names

4.3.7.7 PrintField standard structure attribute owner
If PrintField attribute owner is present on Form structure element, then such structure

element is handled as non-interactive and is derived according to 4.3.5.11.3, “Non-

interactive forms”.

4.3.7.8 HTML
If the value of the O key of an attribute object dictionary begins with the (case-sensitive)

string “HTML-”, then the dictionary shall be considered as containing HTML attributes and

processed according to 4.3.7.2, “Deriving structure attributes to HTML attributes”.

4.3.7.9 CSS
If the value of the O key of an attribute object dictionary begins with the (case-sensitive)

string “CSS-”, then this dictionary shall be considered as containing CSS attributes and

processed according to 4.3.7.2, “Deriving structure attributes to HTML attributes”.

EXAMPLE

PDF

<H1 (O=CSS-3.00 color=red font-size=12px) > { Heading 1 }

<P (O=CSS-3.00 column-count=3) > { long paragraph }

HTML output

<h1 style="color: red; font-size: 12px;">Heading 1</h1>

<p style="column-count:3"> long paragraph </p>

4.3.7.10 ARIA roles

If the value of the O key of an attribute object dictionary begins with the (case-sensitive)

string “ARIA-”, then this dictionary shall be considered as containing ARIA attributes and

processed according to 4.3.7.2, “Deriving structure attributes to HTML attributes”.

PDF Association

© 2025 PDF Association 44

4.3.7.11 User Properties

User properties are derived into HTML attributes with names starting with data-pdf-up-

followed by the name of the user property (identified by N entry). All characters contained

in the value of the N entry that are not allowed in the attribute names shall be replaced by

the underscore character (‘_’).

 For each user property (each entry in P array of attribute object dictionary) the processor

shall create a set of HTML attributes as follows:

data-pdf-up-name-V with the value of the V entry

data-pdf-up-name-F with the value of the F entry

data-pdf-up-name-H with the value of the H entry

EXAMPLE

PDF

100 0 obj

<< /Type /StructElem

/S /Figure

/P 50 0 R

/A << /O /UserProperties %Attribute object

/P [%Array of user properties

<</N (Part Name) /V (Framostat) >>

<</N (Supplier) /V (Just Framostats) /H true >> %Hidden

attribute

<</N (Price) /V -37.99 /F ($37.99) >> %Formatted value

]

>>

>>

endobj

HTML output

<figure

data-pdf-up-Part_Name-V = "Framostat"

data-pdf-up-Supplier-V = "Just Framostats"

data-pdf-up-Supplier-H = true

data-pdf-up-Price-V = -37.99

PDF Association

© 2025 PDF Association 45

data-pdf-up-Price-F = "$37.99" >

 </figure>

4.3.7.12 Others

Processing of attributes with any other value of the O key is implementation dependent

and therefore beyond the scope of this document. To achieve consistent output,

implementations should not override attributes defined in ISO 32000-2.

4.4 Processing of a content element

The child elements of structure elements that reference content items consist of the

various types of PDF graphic objects (ISO 32000-2, 8.2 “Graphics objects”): path, text,

XObject, inline image, and shading. Processors shall handle content items based on the

use case:

◼ Where visual fidelity is important (infographics, charts, etc.) a processor shall

process content items as a group by either rasterizing all items and incorporating

the result as a single raster image or by converting to SVG and including the output

in the HTML. An example of such usage might be content elements within Figure

structure element.

NOTE Converting vector graphics to SVG may result in a different visual appearance in the

presence of transparency due to conceptual differences between the definition of PDF

graphics operators (fill or stroke) and SVG operations controlled by the paint-order

◼ For general purposes, each content element object type shall be processed

according to the provisions of this subclause.

Additionally, every first processed content element on a page shall be identified via id

attribute on its parent HTML element, whose value will be constructed as PDF-Page-X

where X is the actual page number. The processor may add the additional css property

page-break-before to the HTML element.

NOTE Processing content items in reading order as defined by structure may result in a

different visual representation than general PDF rendering, regardless of the selected

method of handling content items. There is no guarantee that tagging would respect the

order in which objects are rendered on a page.

4.4.1 Paths
A processor should choose one of the following methods of handling a content element

that represents one or more path objects:

PDF Association

© 2025 PDF Association 46

◼ rasterize the paths and then incorporate it into the HTML as a single raster image

(see 4.4.3, “Image XObjects and inline images”), or

◼ convert to SVG and include it either directly in the HTML or via an img element, or

NOTE Converting vector graphics to SVG may result in a different visual appearance in the

presence of transparency due to conceptual differences between the definition of PDF

graphics operators (fill or stroke) and SVG operations controlled by the paint-order

attribute.

◼ represent it as a canvas object, or

◼ using CSS styles.

If the paths are irrelevant to the reuse application, the processor may not to output path

objects.

4.4.2 Text
The text of the structure content element shall be converted to UTF-8 (see 4.2.1, “Head”)

and derived as the content of the HTML element.

4.4.3 Image XObjects and inline images
The image content shall be derived into an img HTML element. The width and height

attributes on the img element shall be present and shall represent the logical size of the

image as it would be displayed when rendering the PDF page at 100%, assuming a default

viewing distance of an arm’s length and page sizes typically used for reading at arm’s

length.

NOTE 1 According to HTML, width and height are specified without units and imply pixels

(px). Pixels are defined in “CSS Values and Units Module Level 3” as 1/96 inch at a viewing

distance of an arm’s length (28 inch or 0.712 m). The values for the width and height

attributes do not have to match the actual number of pixels in the horizontal and vertical

direction in the image file. If the ratio between the width and height attributes differs from

the actual number of pixels in the horizontal and vertical direction in the image file, the

image will be distorted accordingly when rendered.

How image data is encoded in PDF differs in many regards from how image data is

encoded in file formats such as GIF, PNG, or JPEG, or in SVG. When converting from PDF

image data to an OWP-supported file format, a processor should choose the most suitable

file format and should take into account the following aspects:

◼ the bit depth, whether by not using GIF or using dithering or other mechanisms

◼ the colour appearance, whether by converting to a device colour space that matches

the rendering system’s or device’s characteristics or by embedding a suitable ICC

profile

◼ the compression; using lossy compression only if no additional loss of information is

incurred

◼ the effect of any Mask or SMask entries applicable to the image data in the PDF

Image XObjects that contain an ImageMask entry with a value of true shall be encoded

such that the current colour in the current graphic state is taken into account, and the

PDF Association

© 2025 PDF Association 47

masking effect shall be represented appropriately in the file format to which the image is

converted.

If the processor is unable to convert the data, it shall place some form of placeholder

image, of the same logical (display) size, in the output HTML.

NOTE 2 This ensures that the HTML will at least lay out the same way as it would if the

image were present.

The value of the src attribute on the output img element shall be the URL to the image

data that the processor has prepared.

NOTE 3 Since the handling of the image data is implementation-dependent, the URL can

be any valid URL, including absolute (with or without prefix) or data URLs (RFC 2397).

4.4.4 Form XObjects
A processor shall process a content element that represents a Form XObject as a grouping

of other elements. Each of those elements shall be processed as per 4.4, “Processing of a

content element”.

4.4.5 Shadings
A processor should choose one of two methods of handling a content element that

represents a shading:

◼ rasterize the shading and then incorporate it into the HTML as a single raster image

as per 4.4.3, “Image XObjects and inline images”, or

◼ process the shading as a vector element (path) and then address as per 4.4.1, “

Paths”.

If the shadings are irrelevant to the reuse application, the processor may not output

shadings.

4.4.6 Artifacts
The derivation algorithm intentionally ignores artifacts not contained in the structure tree

(see 4.3.5.9, “NonStruct, Private and Artifact”).

4.4.7 Handling marked content sequences

4.4.7.1 Lang attribute in a marked content sequence

When a marked content sequence contains the Lang attribute, the content enclosed by

this marked content sequence shall be enclosed in a span element having a lang attribute

whose value is the UTF-8 encoded value of the Lang attribute.

4.4.7.2 ActualText attribute in a marked content sequence
When a marked content sequence contains the ActualText attribute, the content

enclosed by this marked content sequence shall be replaced by the UTF-8 encoded value

of the ActualText attribute.

PDF Association

© 2025 PDF Association 48

In contrast to other attributes, the ActualText serves as a textual replacement of the

content, and an additional span element is unnecessary unless the marked content

sequence contains a combination of multiple attributes.

EXAMPLE

PDF

<P> {

The wavelength is commonly represented by

/Span <</ActualText "lambda" /Lang "el">> λ

}

HTML output

<p> The wavelength is commonly represented by <span

lang="el">lambda </p>

4.4.7.3 Alt attribute in a marked content sequence

When a marked content sequence contains the Alt attribute, the content enclosed by this

marked content sequence shall be enclosed in a span element having an alt attribute

whose value is the UTF-8 encoded value of the Alt attribute.

4.4.7.4 E attribute in a marked content sequence

When a marked content sequence contains the E attribute, the content enclosed by this

marked content sequence shall be enclosed in an abbr element having a title attribute

whose value is the UTF-8 encoded value of the E attribute.

4.4.7.5 Multiple attributes in a marked content sequence

When a marked content sequence contains more than one of the Lang, ActualText, Alt or

E attributes, only one span element shall be created. If the E attribute is one of these

attributes, the abbr element shall be created inside the span element, with the content

inside the marked content sequence or, in the case where an ActualText attribute is

present, the UTF-8 encoded value of the ActualText attribute as its content.

4.4.8 Processing of an object reference (OBJR)

4.4.8.1 XObjects

Object references in structure elements of type XObject shall be processed according to

4.4.4, “Form XObjects”.

4.4.8.2 Annotations (other than of type Link and Widget)
Handling of annotations other than Links and Fields/Widgets will be addressed in a future

version of this specification.

NOTE All other annotation types are out of scope for this document.

PDF Association

© 2025 PDF Association 49

4.4.8.3 Widget annotations

Object references in structure elements of type Form reference widget annotations. Based

on the type of the form field it belongs to, a widget annotation will be processed

differently.

HTML provides different types of elements for different types of form fields, such as

button, input, select, and textarea, which are collectively referred to as HTML form

fields.

Widget annotations that are invisible or hidden, have a width or a height of 0 (zero) or are

completely outside the CropBox – or in the absence of the CropBox, completely outside

of the MediaBox – of the page on which they are present, or are not present on any page,

shall be processed with CSS property display set to none

When constructing the html elements from Form structure element and associated

widget annotation, the processor uses different sources of information. The processing

order shall guarantee that the derived HTML represents the author’s intent, which may

override the functionality provided in the pdf presentation.

Information shall be processed in the following order:

1. Structure element properties

2. Widget annotation attributes

3. Layout attribute owner

4. HTML attribute owner

5. CSS attribute owner

6. ARIA attribute owner

NOTE 1 The order guarantees that the most significant attributes are processed last and

therefore gives authors the ability to override standard AcroForm functionality with html

specific constructs more suitable for consumption in HTML based environment

4.4.8.3.1 Mapping widget annotations to HTML

Widget annotations shall be mapped to one of the following HTML elements. Additional

HTML attributes and inner HTML shall be derived as defined in the following tables.

◼ button (see “Table 5: Mapping widget annotations to button HTML elements”)

◼ input (see “Table 6: Mapping widget annotations to input HTML element”)

◼ textarea (see “Table 7: Mapping widget annotations to the textarea HTML element”)

◼ select (see “Table 8: Mapping widget annotations to select HTML element”)

PDF Association

© 2025 PDF Association 50

Table 5: Mapping widget annotations to button HTML elements

Type of field type

attribute

Additional attributes

Push button field button

Submit button (Push

button with A (action)

entry where the S

(subtype) entry's value is

SubmitForm);

The ExportFormat flag

shall be set to HTML

submit Map URL in F in SubmitForm action to

formaction attribute

Map GetMethod flag to formmethod attribute

with value get or post

Reset button (Push

button with A (action)

entry with the S (subtype)

entry's value is

ResetForm)

reset

Import-data button (Push

button with A (action)

entry with the S (subtype)

entry's value is

ImportData)

button button

NOTE Import-data is out of scope for

this document; if encountered it is

processed like a regular Push button

field

Signature field button Validation of signatures happens on the PDF

and only final status of the digital signature

validation is derived into actionable message

in implementation-dependent way.

EXAMPLE

<button

onClick="alert('Digital signature is

Valid')">

</button>

NOTE: Invisible digital signatures are not subject of

tagging. The processor may include validation

PDF Association

© 2025 PDF Association 51

Type of field type

attribute

Additional attributes

information of those digital signatures in

implementation-dependent way.

If the derived HTML element is button, then inner HTML shall be created with

◼ N appearance stream per 4.4, “Processing of a content element”

◼ CA entry from the MK dictionary

Table 6: Mapping widget annotations to input HTML element

Type of field type

attribute

Additional processing

Check box button field checkbox If an Opt entry is present, map the

applicable entry to the value

attribute.

If an Opt entry is not present, map the

name in the Widget's normal

appearance stream (as defined by a

value other than Off in the N

dictionary of the widget's AP

dictionary), to the value attribute.

If the AS entry’s value is not Off, set

the checked attribute

Radio button field

NOTE: The flag

RadiosInUnison is

not supported.

radio If an Opt entry is present, map the

applicable entry to the value

attribute.

If an Opt entry is not present, map the

name in the Widget's normal

appearance stream (as defined by a

value other than Off in the N

dictionary of the widget's AP

dictionary), to the value attribute.

PDF Association

© 2025 PDF Association 52

Type of field type

attribute

Additional processing

If the AS entry’s value is not Off, set

the checked attribute

Single line text field text If the RichText flag is not set and RV

is not present, map V to value

Map MaxLen to maxlength

Map DoNotSpellCheck to spellcheck

If the RichText flag is set and RV is

present, additional inner HTML from

the RV entry shall be created.

Password text field (i.e. Single

line text field with the

Password flag set; multiline

text fields with Password flag

set are not supported, and will

be mapped as single line text

fields)

password Map V to value

Map MaxLen to maxlength

Map DoNotSpellCheck to spellcheck

File select text field (i.e. Single

line text field with the

FileSelect flag set; multiline

text fields with FileSelect flag

set are not supported, and will

be mapped as single line text

fields)

file Map V to value

Map MaxLen to maxlength

Map DoNotSpellCheck to spellcheck

Choice field with Edit flag set text Map V to the value

Add list attribute referring to an id of

the associated datalist element (see

below)

Create sibling datalist with a unique

id property

PDF Association

© 2025 PDF Association 53

Type of field type

attribute

Additional processing

Map Opt array values to inner option

elements inside datalist

NOTE As of today, datalist is

not supported in IE9 or

earlier or in Safari.

Table 7: Mapping widget annotations to the textarea HTML element

Type of field Additional processing

Multiline text

field

Map MaxLen to maxlength

Map DoNotSpellCheck to spellcheck

If RichText flag is set and RV is present, inner HTML from RV entry shall

be created; otherwise create inner HTML from V entry

Table 8: Mapping widget annotations to select HTML elements

Type of field Additional processing

ListBox Set size to 3

Combo

If the derived HTML element is select, then:

• If Multiselect field is defined, add multiple HTML element

• Map the entries from the Opt entry of the form field to option inner HTML

• Map V and I to the attribute(s) selected in the corresponding option element(s)

4.4.8.3.2 Widget annotation attributes

Certain widget annotation attributes (see ISO 32000-2, 12.5.6.19 “Widget annotations”), if

present, shall be added to the HTML form field element:

PDF Association

© 2025 PDF Association 54

As local style attributes, using suitable CSS declarations as noted in “Table 4: Mapping

layout standard structure attribute owner to CSS properties”:

◼ highlighting mode (H entry)

◼ border style (BS entry)

◼ border color (BC entry in the MK dictionary)

◼ background color (BG entry in the MK dictionary)

◼ text alignment as defined in the Q entry if applicable for the derived HTML element

As HTML attributes:

◼ ReadOnly (Ff entry) mapped to readonly

◼ Required (Ff entry) mapped to required

◼ The fully qualified form field name (as defined in ISO 3200-2, 12.7.4.2 “Field names”)

mapped to name

4.5 ECMAScript

To achieve an equivalent experience in HTML as when processing forms in the PDF

context, the processor shall derive embedded ECMAscripts into HTML javascript when

deriving Widget annotations into HTML form fields. ECMAScript for PDF (see ISO 21757-1)

defines the set of static and dynamic objects available to PDF.

The recommended way is to develop a JavaScript library that provides implementations

of the ECMAScript objects. The implementation details are not part of this specification;

it's up to the developer to ensure the expected behavior. See “Annex B: ECMAscript

derivation guidance” for examples of implementation.

4.6 Associated file processing

4.6.1 General
Each associated file’s file specification dictionary may either refer to an embedded file

stream or an external URL-based reference. If the file specification dictionary contains an

FS key with a value of URL and does not contain an EF entry, then it shall be handled as in

4.6.2, “URL References” as described in all sub-clauses of 4.6, “Associated file processing”.

If the file specification dictionary contains an EF entry, then it should be processed as

“Embedded Files” as described in all sub-clauses of 4.6, “Associated file processing”. The

processor shall ignore all other file specification dictionaries.

While it is recommended to process associated files as described in this chapter, the

implementer may decide not to do so, or limit implementation only to certain media types

due to security concerns. See “Annex A: Security implications”.

PDF Association

© 2025 PDF Association 55

4.6.2 URL References
For URL References, the value of the F entry in the associated file’s file specification

dictionary is the URL that shall be used to refer to the external services. URL References

shall not target local files nor make use of the file URL scheme.

NOTE 1 File URL schemes are specified in RFC 1738, Uniform Resource Locators (URL). The

prohibition of file URL schemes implies that it is not possible to reference local files.

For Embedded Files, the URL shall be the value of the UF entry from the associated file’s

file specification dictionary.

NOTE 2 This requirement ensures that resources and associated files can reliably refer to

each other, for example, CSS referring to an image to be used as a background.

4.6.3 Media types
The handling of an associated file, whether it is a URL Reference or an embedded file shall

be based on its media type.

For URL References, the filename extension of the URL (see 4.6.2, “URL References”) shall

be used in conjunction with “Table 9: Media types supported by embedded files” to

determine the media type of the associated file.

For embedded files, the media type shall be determined by the value of the Subtype key

of the embedded file stream dictionary that is the value of the EF key of the associated

file’s file specification dictionary.

“Table 9: Media types supported by embedded files” lists the known media types, their

filename extensions, what each represented, and which of the following sub-clauses

provides more information about processing it.

If the file extension of the associated file is not one of the known extensions

corresponding to the media types specified in “Table 9: Media types supported by

embedded files” then the processor may process it or ignore it as it deems appropriate. A

processor may support additional filename extensions and/or media types beyond those

in the table.

Table 9: Media types supported by embedded files

Media types Filename

extensions

Type of object Sub-

clause

text/html application/xhtml+xml .htm, .html, .xhtml HTML or

XHTML

4.6.4.2

text/css .css CSS 4.6.4.3

PDF Association

© 2025 PDF Association 56

Media types Filename

extensions

Type of object Sub-

clause

text/javascript

application/javascript

.js JavaScript 4.6.4.4

image/jpeg image/png image/gif .jpg, .jpeg, .png, .gif Images 4.6.4.5

image/svg+xml .svg SVG 4.6.4.6

application/mathml+xml .xml, .mathml MathML 4.6.4.7

4.6.4 Handling media types

4.6.4.1 General

When processing a structure element with an associated file, in some cases the associated

file will replace the otherwise generated HTML element while in others it will be additive

and only replace the content the structure element is referencing:

◼ If the value of the AFRelationship key in the associated file’s file specification

dictionary is Alternative then the associated file serves as a replacement and all

children of the structure element shall be ignored.

◼ If the value of the AFRelationship key in the associated file’s file specification

dictionary is Supplement then the associated file serves as a supplemental and after

processing the associated file the processor shall continue with processing children

of the structure element ignoring all the direct content items.

NOTE The distinction is that alternative representations replace the structure element

itself together with all the content items, substructure, and attributes assigned to structure

element. The supplement would only replace content items assigned with the structure

element. The structure element, its attributes, and substructure items are the subject of

derivation.

EXAMPLE

PDF

<Figure AF with Supplement containing apple.png data> {

<Caption> {Apple}

PDF Association

© 2025 PDF Association 57

CONTENT [The actual image or illustration converted to

apple.jpg during derivation]

}

<Figure AF with Alternative containing orange.png data> {

<Caption> {Orange}

CONTENT [The actual image or illustration converted to

orange.jpg during derivation]

}

HTML output

<figure>

 <figcaption>Apple</figcaption>

 </figure>

In both cases, all requirements for attribute processing (see 4.3.7, “Attributes”) shall

apply.

NOTE This enables an author to provide specific attributes on the output HTML elements

by having them present on the PDF structure element.

Associated files with a value other than Alternative or Supplement for the AFRelationship

key in the associated file’s file specification dictionary may be ignored; the processor shall

continue with children of the structure element.

Multiple associated files shall be processed in the order in which they are stored in the

array of the AF key.

For security reasons, processors may choose to mitigate risks by ignoring categories of

Associated Files.

4.6.4.2 HTML
If the associated file is a URL Reference, then the processor shall add a link element to the

head element of HTML output, with attributes of rel (with a value of import) and href (with

a value that is the URL).

If the associated file is an Embedded File then the contents of the associated file’s

embedded file stream shall be added directly to the output HTML stream, taking the place

of the structure element that would normally have been generated.

PDF Association

© 2025 PDF Association 58

NOTE This mechanism allows direct injection of an associated file of type HTML into the

output HTML stream. It is therefore expected that the associated file is not a complete

HTML file, but a portion that follows HTML syntax.

4.6.4.3 CSS
If the associated file is either a URL Reference or an Embedded File of type CSS, then the

processor shall add to the output HTML the definition of internal or external CSS by

◼ adding immediately before the referencing HTML element, a style element, whose

contents shall consist of either

▪ content of the target file

▪ or an @import declaration with a value of the URL.

◼ or using an link element

EXAMPLE 1

<style>@import url(specialtable.css);</style>

EXAMPLE 2

<style>

h1 {

 color: maroon;

 margin-left: 40px;

}

</style>

EXAMPLE 3

<link rel="stylesheet" type="text/css" href="specialtable.css"

</link>

4.6.4.4 JavaScript
If the associated file is either a URL Reference or an Embedded File of type JavaScript,

then the processor may add to the output HTML, immediately after the referencing HTML

element’s closing tag, a script element with the type attribute whose value is

“text/javascript” and either:

◼ an attribute of src whose value is the URL and no content; or

◼ by providing the content of the target file as the content of the script element.

EXAMPLE 1

<script type="text/javascript" src="specialtable.js"> </script>

EXAMPLE 2

PDF Association

© 2025 PDF Association 59

<script type="text/javascript">

document.getElementById("demo").innerHTML = "Hello JavaScript!";

</script>

If the structure element with the associated file attached derives to script in the HTML

namespace (http://www.w3.org/1999/xhtml) then the HTML element shall be script. All

children of the structure element shall be ignored.

4.6.4.5 Images

To incorporate images into the HTML output, regardless of whether the associated file is a

URL Reference or an Embedded File, an img element shall be added to the HTML output

with a src attribute whose value is the URL or a URL constructed from data provided by

the associated file

4.6.4.6 SVG

To incorporate SVG into the HTML output, regardless of whether the associated file is a

URL Reference or an Embedded File, an img element shall be added to the HTML with an

attribute of src whose value is the URL or a URL constructed from data provided by the

associated file. If the structure element has a BBox structure attribute (of any owner or

namespace), then the height and width of that BBox shall be written out, respectively, as

height and width attributes on the img element. These height and width attributes

should be determined as described in 4.4.3, “Image XObjects and inline images”.

4.6.4.7 MathML
If the associated file is an Embedded File containing MathML then the contents of its

embedded file stream shall be added directly to the HTML output.

NOTE Since MathML is not supported by all user agents, a conforming processor may need

to take additional steps to ensure that it is presented as the author expected.

 EXAMPLE

PDF

<P> { The area of a circle is

<Formula AF with Supplement containing mathml data> {

CONTENT [π * r ^ 2]

 <Lbl> {1.}

}

}

HTML output

<p>

The area of a circle is

 <math xmlns="http://www.w3.org/1998/Math/MathML">

PDF Association

© 2025 PDF Association 60

<mi>π<!-- π --></mi>

 <mo>⁢<!-- ⁢ --></mo>

 <msup>

 <mi>r</mi>

 <mn>2</mn>

 </msup>

</math>

 1.

</p>

PDF Association

© 2025 PDF Association 61

Annex A: Security implications

(informative)

There are serious security concerns when it comes to the derivation of PDF files to HTML.

PDF structures may contain information that can take advantage of the derivation process

and embed malicious code into derived HTML. One major concern is the fact that PDF files

may contain such code, and the process of derivation defined in this document does not

guarantee full control over the output HTML. In the case of a public service that allowed

users to upload PDF files to experience in HTML form through derivation, an attacker

could leverage this case by uploading a crafted PDF; derivation in itself does not prevent

the creation of malicious HTML.

Examples of such scenarios may include:

◼ Embedded JavaScript could access a whole web page if the PDF is derived into a

<div>, facilitating the delivery of malicious information

◼ JavaScript could access cookies

It is therefore the responsibility of the developer to recognize security risks in each specific

implementation. While using derivation in an enclosed environment where the developer

controls the HTML viewing system, the risk might be considered as low. In cases such as,

allowing users to upload random PDF files to be served as HTML to other users or systems,

the developer should clearly apply stringent processing requirements.

PDF Association

© 2025 PDF Association 62

Annex B: ECMAscript derivation guidance

(normative)

It is not in the scope of this document to define precisely how PDF ECMAscript shall be

derived into JavaScript libraries for use with HTML. In this Annex we will provide guidance

and examples focusing on the most common functionality.

EXAMPLE app object represents the application. In a desktop environment, the

application works with several open documents available through activeDocs property or

requires interactivity with the end-user through the alert method. Desired functionality

might be different in an HTML environment, and activeDocs method could always return

1, and alert method could be implemented with window.alert() or with console.log()

function.

A minimal app implementation could look like the following code:

var app = new Object();

//properties

app.viewerVersion = 1;

app.viewerType = "Derivation";

//methods

app.response = function () { return null; };

app.beep = function (b) { };

app.alert = function (msg) {

window.alert(msg);

};

Each HTML form field should have its own Field JavaScript object that mimics the source

ECMAScript object.

It is recommended to create a Field object only when the HTML form field is used or

required, creating and maintaining the array of all fields as appropriate. Fields are

identified by name as required by ISO 32000-2, 12.7.4.2 “Field Names”.

EXAMPLE The following _init function is invoked when the HTML file is loaded by calling:

 document.addEventListener("DOMContentLoaded", _init);

function _init() {

 var elems = document.getElementsByTagName("input");

 for (var i = 0; i < elems.length; i++) {

 e.addEventListener("focus", field_event);

 e.addEventListener("change", field_event);

PDF Association

© 2025 PDF Association 63

 e.addEventListener("click", field_event);

 //only push when elems[i] doesn’t exist in the all_fields array

all_fields.push(elems[i]);

 }

 // the same for "select", "textarea"

 do_calculations();

}

function field_event(e) {

//checks the array of all fields if the field with the name exists.

returns existing or creates a new one

 var f = init_field(i.e., target.name);

 . . .

 // keypress - focused text edit

 if (e.type == "keypress") {

 var keyCode = 0;

 if (e.keyCode != undefined && e.keyCode >= 20)

 keyCode = e.keyCode;

else if (e.charCode != undefined && e.charCode >= 20)

 keyCode = e.charCode;

 if (keyCode != 0)

 event.change = String.fromCharCode(keyCode);

 event.selStart = e.target.selectionStart;

 event.selEnd = e.target.selectionEnd;

 }

. . .

// similarly, for "change" "click" etc.

 . . .

//process the event on the field, check results do calculations return

status

…

 return result;

}

// make sure the implementation is consistent and accessed fields

through ECMA Script follow the same pattern

this.getField = function (name) {

PDF Association

© 2025 PDF Association 64

 return init_field(name);

};

One ECMAScript Field object may reference more widget annotations; the same

functionality shall be preserved in derivation to HTML:

◼ When ECMAScript changes a value, all HTML form fields with the same name shall

change their value.

◼ When one HTML form field is changed, the corresponding Field object is changed

together with all related HTML form fields.

The processor shall include all document-level ECMAScript methods as defined by the

JavaScript entry in the Names entry in the document catalog dictionary and ECMAScript

page-level events defined by the AA entry in the page dictionary.

When deriving the widget annotation, the processor shall expand the JavaScript library

with methods that are defined for each form field in the form field’s additional actions

dictionary. See ISO 32000-2, “Table 199 - Entries in a form field’s additional-actions

dictionary”.

NOTE 1 It is best practice to generate function names for each field’s method based on the

field identifier, which makes managing the invocation of functions as easy as possible.

Processors should keep all calculated fields in a separate array to have the do_calculation

method optimized.

NOTE 2 HTML form fields always show a formatted value, while real value is preserved in

the Field object.

PDF Association

© 2025 PDF Association 65

Annex C: Encrypted files handling

(normative)

The derivation substitutes the process of rendering pdf files in html environment. If a user

attempts to derive an encrypted pdf file the processor shall perform the authentication by

requesting a password, private key, or any other source of information needed to decrypt

the document.

If this authentication attempt is successful, the processor may open, decrypt, and

generate derived HTML in conformance with this document.

It is the responsibility of the viewer to respect the intent of the document author by

restricting user access to specific features according to the permissions granted by the

authentication process.

If the implementer doesn’t control the use of derived HTML and is not able to guarantee

the restriction of access to the document, it is recommended to change the derivation

algorithm and use techniques that allow only permitted use of the content.

The process of authentication, restricting of features in the viewer environment, or

changes to the derivation algorithm is implementation dependent and therefore beyond

the scope of this document, but in all cases the processor shall include data-pdf-perms

attribute on the body HTML element with the value of permissions granted by

authentication as described in ISO 32000-2, “Table 22 - User access permissions” or “Table

24 - Public-key security handler user access permissions”

Additionally, the viewer that recognizes HTML derived from PDF shall restrict the use of

HTML by disabling the user interface or any other techniques to respect the permissions

granted by the data-pdf-perms attribute.

EXAMPLE - permits printing and copying but disallows modifying the contents

and annotations

<body data-pdf-perms=-44>

PDF Association

© 2025 PDF Association 66

Annex D: Accessibility implications

(informative)

By leveraging the Tagging PDF feature in deriving PDF into HTML it should not be

automatically expected that the derived HTML is equally accessible as the PDF file. It

should not be also expected that any accessible PDF is equally accessible as derived

HTML. The author may wish to present visual information differently or add additional

interactive and navigational capabilities in derived HTML therefore, the required result

from an accessible point of view may differ.

It is the author’s responsibility to achieve accessible html by structuring pdf in a way that

derived HTML conforms with standards for HTML accessibility. This can be achieved by

providing HTML and ARIA structure attributes that are carried into HTML.

PDF Association

© 2025 PDF Association 67

Bibliography

RFC 1738, Uniform Resource Locators (URL) (December, 1994) Internet Engineering Task

Force (IETF)

Tagged PDF Best Practice Guide Syntax (June, 2019), PDF Association

Matterhorn Protocol 1.02 (April, 2014), PDF Association

	Foreword
	Introduction
	References
	1 Scope
	2 ​Terms and definitions
	3 Notation
	4 ​Algorithm for deriving HTML from well-tagged PDF
	4.1 Technical context
	4.2 Document handling
	4.2.1 ​Head
	4.2.2 Associated files associated with PDF document
	4.2.3 ​The ClassMap
	4.2.4 ​Body
	4.2.5 Pagination

	4.3 ​PDF structure elements
	4.3.1 ​General
	4.3.2 Common processing
	4.3.2.1 ​Processing PDF structure elements
	4.3.2.2 ​When the PDF structure element does not use an explicit namespace
	4.3.2.3 ​When the PDF structure element uses an explicit namespace

	4.3.3 ​Mapping PDF structure element types to HTML elements
	4.3.4 ​Ensuring valid HTML
	4.3.5 Special cases
	4.3.5.1 Document
	4.3.5.2 Headings
	4.3.5.2.1 Explicitly numbered heading
	4.3.5.2.2 Headings in Tables

	4.3.5.3 Caption
	4.3.5.3.1 Captions of Figures
	4.3.5.3.2 Captions of Tables
	4.3.5.3.3 Captions of Lists

	4.3.5.4 ​Lbl
	4.3.5.4.1 Lbl within a LI (list item)
	4.3.5.4.2 Lbl within a Form
	4.3.5.4.3 Lbl as a child of Hn, Caption, TOCI
	4.3.5.4.4 Lbl as a child of other elements
	4.3.5.4.5 Aria attribute on Lbl

	4.3.5.5 ​Notes
	4.3.5.6 ​Figure
	4.3.5.7 Formula
	4.3.5.8 ​L and TOC (lists)
	4.3.5.8.1 List within list
	4.3.5.8.2 L as description list
	4.3.5.8.3 L within P or Sub

	4.3.5.9 NonStruct, Private and Artifact
	4.3.5.10 ​Links and references
	4.3.5.10.1 Destination
	4.3.5.10.2 URI action
	4.3.5.10.3 ​ GoTo action

	4.3.5.11 Forms
	4.3.5.11.1 ​Form field processing
	4.3.5.11.2 Form field processing for PDF structure elements from the HTML namespace
	4.3.5.11.3 Non-interactive forms

	4.3.5.12 ​Code

	4.3.6 Structure element properties
	4.3.6.1 General
	4.3.6.2 Lang
	4.3.6.3 ​Replacement text
	4.3.6.4 ​Alternate description
	4.3.6.5 ​Expansion text
	4.3.6.6 Ref entry

	4.3.7 ​Attributes
	4.3.7.1 ​General
	4.3.7.2 ​Deriving structure attributes to HTML attributes
	4.3.7.3 ​Deriving structure attributes to CSS properties
	4.3.7.4 ​List standard structure attribute owner
	4.3.7.5 ​Table standard structure attribute owner
	4.3.7.6 ​Layout standard structure attribute owner
	4.3.7.7 ​PrintField standard structure attribute owner
	4.3.7.8 HTML
	4.3.7.9 ​CSS
	4.3.7.10 ​ARIA roles
	4.3.7.11 ​User Properties
	4.3.7.12 Others

	4.4 ​Processing of a content element
	4.4.1 ​Paths
	4.4.2 ​Text
	4.4.3 ​Image XObjects and inline images
	4.4.4 ​Form XObjects
	4.4.5 Shadings
	4.4.6 ​Artifacts
	4.4.7 ​Handling marked content sequences
	4.4.7.1 ​Lang attribute in a marked content sequence
	4.4.7.2 ​ActualText attribute in a marked content sequence
	4.4.7.3 ​Alt attribute in a marked content sequence
	4.4.7.4 ​E attribute in a marked content sequence
	4.4.7.5 ​Multiple attributes in a marked content sequence

	4.4.8 ​Processing of an object reference (OBJR)
	4.4.8.1 ​XObjects
	4.4.8.2 ​Annotations (other than of type Link and Widget)
	4.4.8.3 ​Widget annotations
	4.4.8.3.1 ​ ​Mapping widget annotations to HTML
	4.4.8.3.2 Widget annotation attributes

	4.5 ​ECMAScript
	4.6 Associated file processing
	4.6.1 ​General
	4.6.2 URL References
	4.6.3 ​ Media types
	4.6.4 ​Handling media types
	4.6.4.1 General
	4.6.4.2 ​HTML
	4.6.4.3 ​CSS
	4.6.4.4 ​JavaScript
	4.6.4.5 ​Images
	4.6.4.6 ​SVG
	4.6.4.7 ​MathML

	Annex A: Security implications
	Annex B: ECMAscript derivation guidance
	Annex C: Encrypted files handling
	Annex D: Accessibility implications
	Bibliography

