-« PDF

association

Deriving HTML from PDF

A usage specification for well-tagged 1SO 32000-2 files

Version 1.2 December 2025

Copyright © 2025 PDF Association
This work is licensed under the Creative Commons Attribution 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO
Box 1866, Mountain View, CA 94042, USA.

PDF Association
Neue Kantstrasse 14
14057 Berlin, Germany

Tel: +49 (0)30 39 40 50-0
Fax: +49 (0)30 39 40 50-99

E-mail: copyright@pdfa.org
Web: www.pdfa.org

Published in Germany and the United States of America

mailto:copyright@pdfa.org

Foreword

The PDF Association is the meeting place of the PDF industry. The work of preparing
industry standards and best practices is normally carried out through Technical Working
Groups (TWGs). The results of such work may, if desired by the members of the respective
TWG, the Board of Directors, and the members as a whole, may be submitted to ISO for
publication as an International Standard.

Each PDF Association member interested in a subject for which a TWG has been
established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with the PDF Association,
also take part in the work. The PDF Association collaborates closely with the 3D PDF
Consortium and ISO on all matters of standardization.

The procedures used to develop this document and those intended for its maintenance
are described in the PDF Association's publication process.

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The PDF Association shall not be held responsible for
identifying any or all such patent rights. Details of any patent rights identified during the
development of the document will be in the Introduction.

Any trade name used in this document is information given for the convenience of users
and does not constitute an endorsement.

https://www.pdfa.org/publication-process/

PDF Association

Table of Contents

FOREWORD 00 II
INTRODUCTION ©000

3 NOTATION $00

1
2
3
2 TERMS AND DEFINITIONS ..cccectcecectccecessccecesscsecesscsscessssscessssscessssscsssssssssessosssesse 3
4
4

4 ALGORITHM FOR DERIVING HTML FROM WELL-TAGGED PDF.....ccccccuuerunceancranccnnes

4.1 Technical CONTEXE ..covvuuiiiiiiiniiiiiiniiiiiiniiitiiniintitniiettnniiettnneicetenssssetsnsssesssnsssssssssssssssssssssees 5
4.2 DocumMeENt RaNdliNg...cccuciieeciinecirnnireeciransiranssieresssrssraescrssssssrssrsssssssssssassssassssasssssnesssnesssnns 5
4.2.1 HEAG ettt ettt st b b bbb bt e b et et e e et et et e a e et et e b e b e e besaebn 5
4.2.2 Associated files associated with PDF dOCUMENLcoceririiriiriiniinieienieicieteteteeee et 6
4.2.3 THE ClaSSMaP....ciiririririiriieiestesientestestestesestessestesessessessessessessessessassassessensassensensensesseseesseseesessessessessanses 6
.24 BOAY .uiiiioiiieeiieieeteteetese ettt et s et e st e st e st e st e st e st e et e s a e et e b e e b e e st et e et et e e st et e et eere et esreenteereensennen 8
4.2.5 PAZINATION ettt sttt st ettt st h et e et e et et e s re e e e seeeneesaeeresaeen 9
4.3 PDF Structure elementsccceuceeeiereiineiinireiiieninentoestnsracseicsescsesnsessacssesssesssessssssssssssssnsssssns 9
4301 GONEIAL ittt s s et e ettt ettt s e s bbb b e aben 9
4.3.2 COMIMON PrOCESSING .ecuverrerreereenrertertertesseessesseessessaesesseesseeseesseeseesseessesseensesneessesnsesseenseseesseseessesneens 10
43.2.1 Processing PDF StructUre €lemMENtS........co.ovieievienieieieeneeeeesestesie ettt ettt ettt 10
43.2.2 When the PDF structure element does not use an explicit namespace.......coceevevveveeercerennene 10
43.2.3 When the PDF structure element uses an explicit NamMesSPaCe.......coceveevereerveneenienieeneninenne 11
4.3.3 Mapping PDF structure element types to HTML elements.......cocoevereenienieneenenienineneeeeeneecsenaene 11
434 ENSUNNE VAL HTMLu oottt ettt ettt et sttt 16
4.3.5 SPECIALCASES wecvvieirieriieieistiseste st teste st et et et et et et ese e e s s e eseebe e s e st et et et et e st et et e st eseenaesaeneeseeseesesresaans 17
4.3.5.1 DOCUMENT ..ottt ettt st bbb e ssaesbe s maesbesnes 17
4.3.5.2 HEAAINES ..ttt ettt ettt et sttt s b st b e b e st et et et et et et et et e e eaeeas 17
4.3.5.2.1 Explicitly numbered headingccccevievieieiriririrtrenese ettt eaes 17
4.3.5.2.2 HeadingS iN TableS.....coieiririiiieieeetetetete ettt ettt et et 18
4353 CAPEION ettt ettt et s e st e st e et e st e e aa e st e e sa e e et e e b e e et e e bee s beenaaeebaenaaeearaas 19
4.3.5.3.1 CaptionS Of FIGUIEScouieiririiieienieieiestet ettt ettt sttt sttt st et b et e st e s e e e e ens 19
4.3.5.3.2 CaptionS Of TADLES ..ccuevuiririiriiierieieetcteet ettt e ettt et st s s e seeseesessessenas 19
4.3.5.3.3 CaPtioNs Of LIStS...uecieieieerisisesistesestestesseseseeesseeeessessessessessessessessessessensessessessessessesesses 20
43.5.4 o USSR 21
4.3.5.4.1 LBILWithin @ LI (lISTIEM) cecueieeieeciieieeeteecreccre ettt erre et e eaeestesebeeeseeebeessseebeenseeenseenans 21
4.3.5.4.2 LBLWithin @ FOMM ettt ettt s s e 22
43543 Lblasachildof Hn, Caption, TOCH....cccccecievierieieieeeeeeeeseestesestestetessessesaessessessessesaeseeses 22
4.3.5.4.4 Lblasachild of other elemMentsccooeriiriiriiiiniitnre ettt 22
43545 Aria attribute 0N LBl......o.coe ittt 22
4.3.5.5 NOTES ottt bbb e s b e b e aa e saeenee 23
4.3.5.6 FIBUIE ettt sttt s et e bt e e st e et s ae e b e st e sae et e sme e s e e st e beeme e reeneens 23
4.3.5.7 FOIMIULA .ttt ettt ettt ettt s bbb e s b e st e be b et et et et e st entenesnsenis 25
4.3.5.8 L AN TOC (LISTS) tvrievriiriieiiiiiieeeeetecere et e etteeeveeeseeesteeeareeseesabeessseeabeessseenssessesesseesssesessnseensesens 26
4.3.5.8.1 LISt WIthin LSt .ceuceieieieieieee ettt sttt ettt 26
4.3.5.8.2 L asdeSCription LIStcciieiecieeeeeeieseecteseete ettt e et r et e e et e sre et e sseenresnnenns 27

© 2025 PDF Association iii

PDF Association

4.3.5.8.3 LWIthiN P OrSUD .ottt sttt sttt ettt 28
4.3.5.9 NONStruct, Private and Artifact........cecoveeiieieicieciec ettt ereeeaesesrreeeeenbeeerbeeseeens 29
4.3.5.10 LiNKS @Nnd refErENCES....coueirieirieirietrteteterte ettt sttt sttt b ettt sttt ettt be b b e ten 29

4.3.5.10.1 DESHNGLION ...ttt e 30

4.3.5.10.2 URIGCHON ettt ettt ettt sttt st s st sttt et et b et e e et e e esaenes 30

4.3.5.10.3 GOTO ACHON ..ttt ettt ettt s sa e e 30
L 10 70 A o o 4L TP TP 30

4.3.5.11.1 FOrm field PrOCESSING ...ccevverireiiriirieerieesteeriet ettt ste ettt ste e sbe e sbe e sesasbenaenens 31

4.3.5.11.2 Form field processing for PDF structure elements from the HTML namespace............ 31

4.3.5.11.3 NON-INtEractive fOrMS....c.civiiieiiirieieectree ettt ettt s s e 31
4.3.5.12 COAE ettt ettt ettt ettt a e bbb bt e b e b et et et et et et et et et et et enes

4.3.6 Structure element properties
4.3.6.1 GNEIAL .ttt ettt sttt sttt st st s b et b et b et be e b e eene
4.3.6.2 [] PP RPPTY
4.3.6.3 Replacement text
4.3.6.4 ALLEINALE AESCIIPLION ... eiiteeiectecteee ettt ettt e re et e s e e te s e e be st e beeaesseessesseessessaesensnanes 34
4.3.6.5 EXPANSION TEXE vevvivieiiriieniertenieste st este st este st este st e be et eseeesaessaessessnessesssessesssesssensesssensesssensesnsens 35
4.3.6.6 2 =T 01 4 TR TR 36
3.7 ALEIDULES ettt ettt ettt s a e bbb bbb b et et et et et et et et et eae s 36
43.7.1 GNEIAL .ttt ettt ettt sttt ettt et sttt et h et b et bt b e ebe s e e st enentent 36
4.3.7.2 Deriving structure attributes to HTML attributes........cccocveeeeriniiieniniieecieieeceeeeeeee 37
4.3.7.3 Deriving structure attributes to CSS Properties......c.ceceeeeeererierienienienienieneereesee e 37
4.3.7.4 List standard structure attribute OWNEr.......cccocieiiiririreereee et 37
43.7.5 Table standard structure attribute OWNET........coueeveeriiiericrereeee e 38
4.3.7.6 Layout standard structure attribute OWNETccveeuieieriiriicececeererte e sve e 40
4.3.7.7 PrintField standard structure attribute OWNEercccceeeiririniririieeceeteeeeeeeeeeeee 43
4.3.7.8 HTIML ettt ettt et e e e e e et e e e e s ar e e e e s e asb e eeeesaaseaaeeesesssntaessasnnsseaesasannseneessannns 43
4379 £ ettt st st st b et b et b et sttt b et et et b et b et e b e st be e et ne 43
4.3.7.10 ARIATOLES ettt ettt ettt s b bbbt b e bt e b et ettt ettt e neens 43
4.3.7.11 USEE PIOPEILIES ...ttt et e et e e te e e s a e s e e sressaesse et e ssaensessnensannsans 44
A.3.7.12 OtNEIS ettt sttt sttt ettt st sttt e b et b e bbb st et e st e et st e e ebe e 45
4.4 Processing of a content elementcccceviiinniiinnninnninnesinessranisreressssssssaescssessssssssansssssesses 45
A1 PatRS ettt ettt s h e bbb b e b b et et et et et et et et et et eae s 45
442 TOXE tteeeeiteeete ettt e sttt e e st e e st e e s st te e e s bt e e et e e e s bt e e s b e e e et e e e e bt e e e baee e nt e e e e raeenraeeesbeeenrteesarraeas 46
443 Image XObjects and inliN@ IMAZEScccoevureriririeinieirereretsie sttt sae sttt be s b s 46
444 FOIM XODJECES .ottt ettt ettt ettt ettt s et b b s b e e b e b e st e e e s et et et et et eneeneeneen 47
445 SNAINGS .ottt sttt ettt ettt e a et a e s h s b bbb b b st et et et et et et et et et eae s 47
4.6 ATTIACES ettt ettt ettt be e b e st ene 47
4.4.7 Handling marked CONtENT SEQUENCESc..ocuerueirriririeereniteeee ettt ettt ettt sae s saens 47
4471 Lang attribute in @a marked cONteNnt SEQUENCEccceiriririeerineeseteeee ettt 47
4472 ActualText attribute in @a marked content SEQUENCEcuooveeiereeeieeeeceeeeee e 47
4473 Alt attribute in @a marked CONtENt SEQUENCE.......cceeiviriiriirieieecteeeere e ees 48
4474 E attribute in a marked CONtENt SEQUENCEcvivuiiiiiieeeieecee et 48
4475 Multiple attributes in a marked content SEQUENCE.....ccueecveeeecieeeereceeeeee e 48
4.4.8 Processing of an object reference (OBJR).......cceviivieieriririninentrene e siesieste st stestesaestesessesenaeesnens 48
44381 KODJEEES cuveuteieieietetete ettt st e st et s b et e e b et et et e e esaesessessaeseesesbassa b e st et essessantansesseseeneesessees 48
44.8.2 Annotations (other than of type Link and Widget)ccverirerirenirinieinieireeseeseneeeneeeeneen 48
4483 WidZEt @aNNOLTATIONS ..c..eeuiiiriieiieieeteetce ettt ettt sb bbbttt e et e e eae s 49
4483.1 Mapping widget annotations to HTML.......ccoccvviviirinienenienienienienieniensesseeeseesessessessessesnes 49
4.4.8.3.2 Widget annotation attributes.........ccueiiiiiriiii e 53

© 2025 PDF Association iv

PDF Association

4.5 ECMASCEIPT ceuieuieeieieecenceetencaecentsocasssscsssssssssssssssssssssssssssasssssssssssasssssssssssssssssassassassassassanse 54
4.6 Associated file ProCesSing.....c.ccceveeiieniiirecirnnirusireeisrseicrsessssssssraessssssssasssrssssssssssssssssnsssss 54
4.6.1 GONEIALiuiiuiiieiiiieeiertetere ettt e ettt et s e st e s et e e b e e st et e e st et e et e e et et e e at e aesat e be e s enbeeaeereensensaens 54
4.6.2 URL REfEIENCES ...ooueevieteeteetieteete sttt e e ste et e st et et e s e e esaebassaesasbasbesbestessestessentessessensassessassesansensens 55
4.6.3 MEAIA LY PES ..ttt ettt et ettt st st st s b st s be s b e st e b e b et e st e b et et eabe st entene et saessesbeeaestens 55
4.6.4 HaNdling MeEAIa tYPeS .covviriririiriirienieieiertetetest et et e st s e s e ste st e s b e ssessessessessessesssssessesessessessessessens 56
4.6.4.1 LCT=T 0 T=T -1 F OO TSRS 56
4.6.4.2 HTIML <ottt ettt e ettt e e st e e st e e s st e e sabeeessbeesaseeeesasaeessseesansaessnsaessnnaeesasseennns 57
46.4.3 S S ettt et st e st e st a e e e et e e e et e e a b e e st e e e st e e e b e e s a b e e e s baeeetaee s ntaeennraeeeraes 58
4.6.4.4 JAVASCIIPE ettt sttt ettt e st s b e e b e st e et e s b e et e sbaestesat e besstesaesbesaeenbenaaentes 58
4.6.4.5 MMAEES ettt st s bbb e s a e b s re e s reenee 59
4.6.4.6 SVG ettt ettt ettt e e st e e st e e st e e e et e e e e s e e e s ba e e s bt e e e a b e e e raee e bt e eeensaesataeesraaeesnren 59
4.6.4.7 MAENML ettt sttt ettt et et et e st e e ese e e s e saesbesbe st e b assessensensensensenseseesessessessessenses 59
ANNEX A: SECURITY IMPLICATIONS ..cccitttetectcetacscerecsscesesscsscessssssessssssessssssessssssesass 61
ANNEX B: ECMASCRIPT DERIVATION GUIDANCEccccottttctcacacacacacacacacecececesesasesscecases 62
ANNEX C: ENCRYPTED FILES HANDLING ..cccccottiecececacacncacecacacacecececasasececocosasssssscacaes 65

ANNEX D: ACCESSIBILITY IMPLICATIONSccctutiuiencencencencencenccecsencenceacsancenccassancencs 66
BIBLIOGRAPHY ..cuieuiiniincienirencennieencssnccressasseescsassssssssssssssssssssasssssssassssssssssssassses 67

© 2025 PDF Association v

Introduction

Over the past 30 years PDF format has matured from a fixed-layout, page-description
format into a sophisticated foundation for deploying content. In 2025, PDF’s dominance in
the electronic document marketplace remains based on its fixed-layout heritage rather
than its capabilities as a rich content container.

In the modern world of small devices, 0T, and connected systems, where the interchange
and reuse of data are critical, it is reasonable to question the continued relevance of PDF’s
core value proposition. In particular, search engines, machine learning, and artificial
intelligence systems focus on accessing the information contained in documents over
visual representation. In other cases, document producers wish to deliver data in a form
that is suitable for automated processing while using a PDF file as a record for trust
purposes. End users want electronic documents that adapt smoothly to viewing on
diverse small devices.

By describing the algorithm that produces conforming HTML from a tagged PDF, this
document shows how well-tagged PDF documents, containing both traditional fixed-
layout content and the semantic structures leveraged by modern devices and software,
can be reliably and consistently reused as HTML to support better user experiences and
renew PDF’s value proposition.

HTML was chosen as a derivation target because HTML is consumed on all platforms and
supported by all major vendors. With small modifications, developers can use this
document to export content from well-tagged PDF to any format.

Author

Roman Toda, Foxit software
Contributors

Boris Doubrov, Dual Lab

Olaf Driimmer, callas software
Matthew Hardy, Adobe

Duff Johnson, PDF Association

Leonard Rosenthol, Adobe

© 2025 PDF Association 1

PDF Association

References

Well-Tagged PDF (WTPDF), Using Tagged PDF for Accessibility and Reuse in PDF 2.0,
https://pdfa.org/wtpdf/

ISO 14289-2:2024, Document management applications — Electronic document file
format enhancement for accessibility — Part 2: Use of ISO 32000-2 (PDF/UA-2)

ISO/TS 32005, Document management — Portable Document Format — PDF 1.7 and 2.0
structure namespace inclusion in 1ISO 32000-2

ISO 32000-2, Document management — Portable Document Format — Part 2: PDF 2.0

ISO/IEC 16262:2011, Information technology — Programming languages, their
environments and system software interfaces — ECMAScript language specification. (Also
known as JavaScript. Also available as ECMA-262 Edition 5.1 from ECMA)

ISO 21757-1, Document management - ECMAScript for PDF - Part 1: Use of ISO 32000-2
(PDF 2.0)

WHATWG, HTML Living Standard; https://html.spec.whatwg.org/multipage/

W3C, Digital Publishing WAI-ARIA Module 1.1 (DPUB-ARIA 1.1), W3C Recommendation, 12
June 2025; https://www.w3.org/TR/dpub-aria-1.1/

Cascading Style Sheets Snapshot 2024, W3C Group Note, 25 February 2025;
https://www.w3.0rg/TR/css-2024/

© 2025 PDF Association

https://pdfa.org/wtpdf/
https://html.spec.whatwg.org/multipage/
https://www.w3.org/standards/types#REC
https://www.w3.org/TR/dpub-aria-1.1/
https://www.w3.org/standards/types/#NOTE
https://www.w3.org/TR/css-2024/

PDF Association

1 Scope

This document describes an algorithm that produces conforming HTML from a well-
tagged PDF.

The best results are achieved when tagged pdf files are both authored (by users) and
created (by software) with derivation to HTML in mind. In particular, the semantic
structures defined in Tagged PDF are fundamental to realizing the author’s intent in the
derivation context. Their presence accurately reflects the author’s intent and is the
guarantor of an expected user experience.

This document is intended for the developer of software that:

B creates PDF files suitable for reuse

B interprets PDF contents for alternative display on mobile devices and/or HTML
environments

B embeds PDF viewing into HTML pages

B derives PDF content into HTML for automated processing

This document does not:

B Provide adaptations for deriving PDF into HTML sub-structures (e.g., within a <div>)

B Provide guidance for editing or modifying PDF files or HTML derived from PDF files

B Provide guidance for addressing the security implementations of derivation

B Substitute for best-practice documents focusing on accessibility (see “Annex D:
Accessibility implications”)

Note PDF files non-conformant with well-tagged PDF can be subject to the derivation to
HTML only when considering the distinctions between provisions defined in the WTPDF
and the structure in which the files are created. Otherwise, the results are unpredictable.

2 Terms and definitions

derivation

deterministic process of conversion of well-tagged files into a syntactically valid HTML file
derived HTML

HTML produced by processors operating in conformity with this document

derived CSS

default CSS produced by processors operating in conformity with this document

media type

a two-part identifier for file formats and format contents, also known as MIME type or
content type

© 2025 PDF Association 3

PDF Association

processor

any software, hardware, or other active agent that derives HTML from a well-tagged PDF
file

tagged PDF
PDF files that conform to ISO 32000-2, 14.8 “Tagged PDF”
well-tagged PDF

PDF files that conform with Well-Tagged PDF (WTPDF)

3 Notation

Key names are given in boldface, while values are given in italics.

In examples, pseudo-code, standard PDF structure element entries are given with angled
brackets (e.g., <Div>). The elements are not closed; instead, items contained within PDF
structure elements are enclosed by “{}”. Structure element properties are indicated using
HTML conventions, e.g. “<P Lang="en-us">". Standard brackets enclose structure
attributes representing one structure element owner attribute “()” written in HTML
conventions, including the O (owner) key.

Remarks or special characters are shown by [].

EXAMPLE
<Figure alt="PDF icon"> {

<Caption (O=Layout TextIndent=12.5) (0=CSS-3.00 color=red)>
{

<P> [remark or notice]

<P> {relevant content}

4 Algorithm for deriving HTML from well-tagged PDF

This algorithm establishes requirements for processors desiring consistent results from
the derivation of well-tagged PDF to HTML.

© 2025 PDF Association 4

PDF Association

4.1 Technical context

Use of this algorithm assumes substantial knowledge of ISO 32000-2 in general, and
subclauses 14.6 - 14.9 and 14.13 in particular, as well as HTML. Format requirements in
those specifications are not re-iterated here; knowledge of them is assumed.

4.2 Document handling
The processor shall initialize two output streams - one for the derived HTML and one for

the derived CSS. The HTML stream shall reference the CSS using conventional techniques.

NOTE 1 The processor may decide to store derived CSS in a separate file and use a link
element to define the reference to it in the derived HTML or embed the derived CSS stream
in the head element using style element.

The first line of the HTML document shall be “<IDOCTYPE htm!>”.

NOTE 2 While not required, a DOM-like approach for both HTML and CSS document
processing is recommended to allow for inline-modifications. However, the use of a
stream-based approach is also acceptable.

The next line shall contain an html element. If the Lang key is present in the PDF’s
document catalog dictionary, the lang attribute shall be added to the html element with
the value of the PDF document’s Lang entry.
EXAMPLE

<html lang="EN-US">
Deriving encrypted PDF files as defined by ISO 32000-2, 7.6 “Encryption” requires

authentication and respecting granted permissions. See “Annex C: Encrypted files
handling”.

4.2.1 Head
The next element created in the HTML output shall be a head element with three child
elements, title and meta.

The value of the title element shall be derived from the value of the dc:title metadata
value (if present) in the PDF’s document-level XMP. If the PDF does not have a dc:title
specified, the value of the title element in the HTML shall be the PDF’s filename without
the file extension.

All text shall be encoded using UTF-8, and a meta element with identified character
encoding shall be added.

A second meta element shall be added with the attributes of:

B name, whose value shall be viewport
B content, whose value shall be width=device-width, initial-scale=1

NOTE Using meta facilitates more responsive behavior on diverse devices.

© 2025 PDF Association 5

PDF Association

EXAMPLE
<!DOCTYPE html>
<html>
<head>
<title>A Document’s Title</title>
<meta charset="UTF-8"/>

<meta name="viewport" content="width=device-width, initial-
scale=1"/>

<link rel="stylesheet" type="text/css" href="pdf-derivation-
style.css"/>

</head>

</html>

4.2.2 Associated files associated with PDF document

The document catalog dictionary may have one or more associated files specified via an
AF entry (see I1SO 32000-2, 14.13.3 “Associated files linked to the PDF document’s
catalog”). These AF entries shall be processed to build the head element of the HTML
output (see 4.6, “Associated file processing”).

NOTE This mechanism allows direct injection into the head element of an associated file of
type html with a value of Supplement in its AFRelationship entry. In such a use case, it is
therefore expected that the associated file is not a complete html file, but a fragment
(without head and body elements) that follows HTML syntax.

4.2.3 The ClassMap

If there exists a class map dictionary (as defined by the ClassMap key in the structure tree
root dictionary), then the processor shall iterate over all entries in that dictionary. For
each entry, the processor shall add a new entry in the derived CSS file using the key name
(prepended by a'." after any escaping is expanded) as the CSS selector.

The value of each entry in the class map dictionary is an attribute object dictionary or an
array of attribute object dictionaries. The processor shall identify attributes that map to
CSS properties as described in 4.3.7, “Attributes”, and for each, create a CSS declaration in
the derived CSS using the dictionary key as the property and using the value of this key
(converted into a string using common methods) as the declared value.

If, after iterating over all attribute object dictionaries for a given key in the class map
dictionary, no appropriate attributes are located, the processor may either remove the
selector or provide an empty property list.

© 2025 PDF Association 6

PDF Association

NOTE The ClassMap key names used in PDF can use characters not allowed for html class attribute. It’s
important to use consistent conversion to html string objects when processing ClassMap as well as when
processing structure elements to make sure the class attribute is identified properly.

Handling the ClassMap in derivation is a two-step process. Attributes that represent
styling are derived into a CSS style sheet and later used as a class attribute of the derived
HTML element. Attributes that derive to HTML properties are output when processing PDF
structure elements as described in 4.3.6, “Structure element properties”. When an array of
attribute object dictionaries is present, the processor shall respect order and process only
selected attributes as described in 4.3.7, “Attributes”.

EXAMPLE

PDF specifying class map
1 0 obj
<<

/Type /StructTreeRoot

/K[...] % PDF structure element Kids

/IDTree ... % ID tree mapping element IDs to PDF structure
elements

/RoleMap % RoleMap for the default namespace

o\

/ParentTree
structure elements

Mapping for page content to parent PDF

o\

/ClassMap 2 0 R ClassMap for all elements

>>

2 0 obj % ClassMap dictionary
<<

/HeadingStyle

<<

/O /CSS-2.00

/text-align /center

/color /red

/font-family (Arial, Helvetica, sans-serif)
/font-size (40px)

>>

/ParaStyle

© 2025 PDF Association 7

PDF Association

[

<<

/0 /Layout

/Color [0 0 1] %blue
/BorderColor [0 1 0] %green
/TextAlign /Justify

>>

<<

/0 /CSS-2.00

/color /red

/font-family ("Times New Roman", Times, serif)
/font-size (12px)

>>

]

>>

CSS output
.HeadingStyle {
text-align: center; color: red;
font-family: Arial, Helvetica, sans-serif;
font-size: 40px;

}

.ParaStyle {
font-family: "Times New Roman", Times, serif;
font-size: 12px;

color: red; /*coming from the CSS-2.00 attribute object
dictionary and overrides the Color attribute defined in
Layout attribute object dictionary*/

border-color: green; /*coming from the Layout attribute
dictionary*/

text-align: Jjustify; /*coming from the Layout attribute
dictionary*/}

4.2.4 Body
A body element shall be created immediately after the head element.

© 2025 PDF Association

the

object

object

PDF Association

The children of the body element are created as described in 4.3, “PDF structure
elements”.

If the PDF contains one or more elements in the Fields array of the document’s interactive
form dictionary, then a form element shall be created as a child of the body element with
an attribute, name, whose value shall be acroform.

EXAMPLE

<form name="acroform" id="acroform id"></form>

Allinteractive form elements in the document are derived to corresponding HTML form
fields (see 4.4.8.3, “Widget annotations”). They shall refer to the acroform_id using a
“form” attribute of such HTML element in the derived HTML.

EXAMPLE

<input name="FirstName" form="acroform id"/>

4.2.5 Pagination

HTML doesn’t have a concept of pagination. To allow users navigation based on a page,
and a better understanding of the same content in HTML, the processor shall create an
invisible nav HTML element with an attribute id whose value shall be PDF-PageNavigation
and role attribute with value doc-pagelist.

Children of the nav element are links to page break elements identified when processing
content (see 4.4, “Processing of a content element”) with values representing page labels
for that specific pages (see 1ISO 32000-2, 12.4.2 “Page labels”)

EXAMPLE

<nav hidden id="PDF-PageNavigation" role="doc-pagelist">
I
II
1
2

</nav>

4.3 PDF structure elements

This subclause discusses the processing of PDF’s logical structure.

4.3.1 General

As described in ISO 32000-2, 14.7.2 “Structure hierarchy”, PDF structure elements are
constructed hierarchically, referred to as the structure tree. Processing of the structure
tree shall begin with the root element and proceed in a depth-first, pre-order traversal of
each element and its children.

© 2025 PDF Association 9

PDF Association

NOTE The processing order for nodes specifically indicates pre-order for the depth-first
traversal which is more explicit than logical content order.

4.3.2 Common processing

Any of the nodes in the structure tree may have one or more associated files specified via
the AF key in the PDF structure element’s dictionary. Conforming processors may use such
associated files to add information to the PDF structure element’s HTML output, or to
replace the PDF structure element’s HTML output (see 4.6, “Associated file processing”).

4.3.2.1 Processing PDF structure elements
This sub-clause defines how a processor shall process PDF structure elements. Situations
that require special treatment are defined in 4.3.4, “Ensuring valid HTML”.

4.3.2.2 When the PDF structure element does not use an explicit namespace

If the RoleMap entry is present in the structure tree root, and if it contains an entry
matching the structure type of the PDF structure element, the processor shall apply role
mapping - possibly transitively - until no further role mapping can be applied, as
described in ISO 32000-2, 14.8.6.2 “Role maps and namespaces”. Based on the resulting
structure type - which by definition has to be a PDF 1.7 standard structure type for any
tagged PDF - the processor shall select the corresponding HTML output (see 4.3.3, “
Mapping PDF structure element types to HTML elements”).

The processor shall add a data-pdf-se-type-original attribute with a value representing
the original PDF structure element type before role mapping to the HTML element. If more
than one role mapping is applied, the processor shall concatenate all PDF structure
element types in the data-pdf-se-type-original attribute separated by space characters.

NOTE Extra data attributes with PDF structure types are a unified way to preserve
information from PDF and might help HTML developers to understand and rely on the
original structure that would otherwise be lost during derivation.

A data-pdf-se-type attribute with the value of the PDF standard structure type’s key
name shall be added to the HTML element.

EXAMPLE

PDF RoleMap definition and a fragment of tagged pdf
1 0 obj
<<

/Type /StructTreeRoot

/RoleMap 2 0 R % RoleMap for the default namespace
>>
2 0 obj % RoleMap dictionary

© 2025 PDF Association 10

PDF Association

<<
/InlineShape /Shape
/Shape /Figure

>>

<InlineShape> {CONTENT}

HTML output

<img data-pdf-se-type="Figure" data-pdf-se-type-
original="InlineShape Shape" src="image.]jpg"/>

4.3.2.3 When the PDF structure element uses an explicit namespace

If the PDF structure element uses either of the standard structure namespaces for PDF 1.7
or PDF 2.0 - as defined in ISO 32000-2, 14.8.6.1 “Namespaces for standard structure types
and attributes” - then based on its structure type, choose an output HTML element
according to “Table 1: Mapping the PDF standard structure element namespace structure
types to HTML”.

A data-pdf-se-type attribute with the value of the PDF standard structure type’s key
name shall be added to the HTML element.

If the PDF structure element uses the MathML namespace - as defined in ISO 32000-2,
14.8.6.3 “Other namespaces”- then the processor shall use its structure type directly as a
MathML element.

NOTE 1 Direct usage of structure type, which is the value of S key in the structure element
dictionary (see 1SO 32000-2, “Table 355 - Entries in a structure element dictionary”),
requires conversion from the name type to a string.

If the PDF structure element uses the HTML namespace the processor may use its
structure type directly as the HTML element.

NOTE 2 Direct usage of the HTML namespace raises the same security concerns that apply
to HTML in general. See “Annex A: Security implications” for additional guidance.

If the PDF structure element uses any other namespace - transitively, if applicable - the
processor shall apply role mapping until encountering a structure type that belongs to
one of the sets of structure types described above - PDF 1.7, PDF 2.0, MathML or optionally
HTML - and then determine the HTML element to use accordingly.

NOTE 3 This implies that not all role mappings on a given element are processed if one of
the defined sets is encountered first.

4.3.3 Mapping PDF structure element types to HTML elements

Processors shall use the mappings given in “Table 1: Mapping the PDF standard structure
element namespace structure types to HTML” when determining which HTML element to
use when processing PDF structure element types within the PDF 1.7 and PDF 2.0 standard

© 2025 PDF Association 11

PDF Association

structure namespaces (see ISO 32000-2, 14.8.6.1 “Namespaces for standard structure
types and attributes”). In many cases a straightforward mapping from PDF to HTML
structure is inadequate for full conveyance of semantics. Clause 4.3.5, “Special cases”
provides processing requirements accommodating each of these cases.

Table 1: Mapping the PDF standard structure element namespace structure types to HTML

PDF 1.7 SSTs | PDF 2.0 SSTs HTML element
Annot Annot -
See 4.4.8.2, “Annotations (other than of type Link
and Widget)”.
NOTE 1 This version of this document
does not address the Annot structure
element type.
Art - article
- Artifact -
NOTE 2 The Artifact structure elements
are not output, nor is any of its content or
descendent elements (see 4.3.5.9,
“NonStruct, Private and Artifact”).
- Aside aside
BibEntry - p
BlockQuote - blockquote
Caption Caption caption / figcaption / div
See 4.3.5.3, “Caption”.
Code - code / pre
See 4.3.5.12,“Code”
Document Document div

See 4.3.5.1, “Document”

© 2025 PDF Association

12

PDF Association

PDF 1.7 SSTs | PDF 2.0 SSTs HTML element
- DocumentFragment | div
Div Div div
- Em em
- FENote div/span/small
See 4.3.5.5, “Notes”
Figure Figure figure
See 4.3.5.6, “Figure”
Form Form See4.3.5.11, “Forms”
Formula Formula div /span
See 4.3.5.7, “Formula”
H H -
Not supported; See 4.3.5.2, “Headings”
H1..H6 H1.. H6 hl..h6/p
See 4.3.5.2, “Headings”
- H7..Hn p
Index - section
L L ul/ol/dl
See 4.3.7.4, “List standard structure attribute
owner” and 4.3.5.8, “L and TOC (lists)”
Lbl Lbl label / span / div/ dt

See 4.3.5.4, “Lbl” and 4.3.7.4, “List standard
structure attribute owner”

© 2025 PDF Association

13

PDF Association

PDF 1.7 SSTs | PDF 2.0 SSTs HTML element
LBody LBody div/dd
See 4.3.7.4, “List standard structure attribute
owner”; see 4.3.5.8.2, “L as description list” for a
description list.
LI LI li / div
See 4.3.7.4, “List standard structure attribute
owner”; see 4.3.5.8.2, “L as description list” for a
description list.
Link Link a
NonStruct NonStruct - /div
NOTE 3 The structure element is
processed only if contains attributes.
Content it contains is processed normally.
See 4.3.5.9, “NonStruct, Private and
Artifact”.
Note -
NOTE 4 Note structure element are not allowed in
the conforming file. See FENote for further
information on deriving footnotes and endnotes
P P p
Part Part div
Private - -
NOTE 5 The processing of structure
element and its children is
implementation specific See 4.3.5.9,
“NonStruct, Private and Artifact”.
Quote - q
Reference - a
RB RB rb

© 2025 PDF Association

14

PDF Association

PDF 1.7 SSTs | PDF 2.0 SSTs HTML element
RP RP rp

RT RT rt
Ruby Ruby ruby
Sect Sect section
Span Span span

- Strong strong
_ Sub span
Table Table table
TBody TBody tbody
TD TD td
TFoot TFoot tfoot
TH TH th
THead THead thead
- Title div
TOC - ol
TOCI - li

TR TR tr
Warichu Warichu span
WT WT span
WP WP span

© 2025 PDF Association

15

PDF Association

4.3.4 Ensuringvalid HTML

PDF and HTML use different methods of expressing certain structures and restrict these
structures in different ways.

To achieve interoperable reuse of PDF content in syntactically valid HTML, the derivation
process has to account for these differences.

EXAMPLE

PDF allows the following as a valid nesting of standard structure elements:
<Table>{
<TR>{
<TH> {

<H1> { Heading inside TH}

}

As shown below, direct derivation of the above example would not produce valid HTML
because the hl element is not allowed as a descendant of the th element.

HTML output
<table>
<tr>
<th>
<hl>Heading inside TH</hl>
</th>
</tr>

</table>

PDF allows even more complex structures that don’t have a semantically equivalent
expression in HTML.

EXAMPLE

PDF allows tables to include captions which may themselves include tables:
<Table>{
<TR> {..}
<Caption> {

<Table> {..}

© 2025 PDF Association 16

PDF Association

}

Whereas in HTML, even though the caption element is allowed as a descendant of a table
element, the caption is required to be the first table element and cannot include another
table as its descendant.
HTML output
<table>

<tr>..</tr>

<caption>

<table>..</table>

</caption>

</table>

ISO 32000-2, 14.8.4.2 “Nesting of standard structure elements” defines rules that apply to
standard PDF structure elements and the context in which they can be used.

Additionally, PDF structure elements with a type of Link or Form are special cases
according to 4.3.5.10, “Links and references” and 4.3.5.11, “Forms”.

4.3.5 Special cases

4.3.5.1 Document

The PDF document can contain multiple Document structure elements. This usually
happens when PDF file is composed of multiple semantically different documents being
merged.

The processor may derive Document structure elements into div elements and keep
combined documents in a single html.

For a better user experience when dealing with large files, the processor can run separate
derivations on each Document structure element producing a set of separate html files.
Those files will be referenced from the main html file using link element.

4.3.5.2 Headings

4.3.5.2.1 Explicitly numbered heading
The use of H structure element is not allowed as per Well-Tagged PDF. If present in pdf file,
it shall be mapped to p.

HTML does not directly include support for heading levels above h6, which means that H7
and beyond PDF structure element types should typically map to p. To correctly convey
the intended semantics, the document creator may use WAI-ARIA attributes. Processors
may output such attributes automatically (even if not present in the document).

EXAMPLE
PDF

© 2025 PDF Association 17

PDF Association

<H7 (O=ARIA-1.1 role=heading aria-level=7) > { Heading 7 }
HTML output
<p role="heading" aria-level="7">Heading 7</p>

4.3.5.2.2 Headingsin Tables
If any heading structure element (H1..Hn) is a child of a TH structure element then that
heading structure element shall be mapped to an HTML p element:

EXAMPLE
PDF
<Table>{
<TR>{
<TH> {
<H1> { Heading inside TH}
}
}
}
HTML output
<table>
<tr>
<th>
<p>Heading inside TH</p>
</th>
</tr>
</table>

If a Sect structure element is the child of a TH structure element, then all such Sect
structure elements shall be mapped to div in the output HTML.

EXAMPLE

PDF
<Table>{
<TR>{
<TH> {
<Sect> {
<Sect> {

<L> { list}

© 2025 PDF Association

PDF Association

}
HTML output

<table>
<tr>
<th>
<div>
<div>
 ..
</div>
<p> .. </p>
</div>
</th>
</tr>

</table>

4.3.5.3 Caption

4.3.5.3.1 Captions of Figures
If a Caption structure element is a direct child of a Figure structure element, then it shall
be mapped to the HTML element figcaption.

4.3.5.3.2 Captions of Tables

If a Caption structure element is a direct child of a Table structure element, then the
output HTML element shall be caption, and it shall become the first child of the
corresponding HTML table element.

If, using this method, a caption element containing a table or ol/ul /dl becomes a child of
another table element - to avoid invalid HTML, a processor may either:

B Move the table or ol/ul/dl sub-structure from within the Caption to immediately
follow the parent table. If not allowed to be nested there continue to move up in the
tree, or

B derive all PDF structure elements to span if visual representation is more critical.

© 2025 PDF Association 19

PDF Association

EXAMPLE

Valid PDF structure without a semantic equivalent in HTML

<Part> {
<Table> {
<Caption> {
Some text
<Table> { [table inserted into the caption] }
}
<TR> {}
}
}
HTML output
<div>
<table>
<caption>
Some Text
</caption>
<tr> </tr>
</table>
<table> <!-- table inserted into the caption --> </table>
</div>

4.3.5.3.3 Captions of Lists

If a Caption structure element is a direct child of a L or TOC structure element, thenit’s
derived into div and shall be moved outside of the derived parent element.

EXAMPLE
<Part> {
<L> {
<Caption> {

Some text

 { ..}

© 2025 PDF Association

20

PDF Association

HTML output
<div>
<div> Some text </div>

.. </1li>

</div>

4.3.5.4 Lbl

4.3.5.4.1 Lblwithina LI (listitem)

The presence of an Lbl element in an Ll indicates that the list label has explicit meaning. If
an LI omits an Lbl, then the list marker is defined by the ListNumbering attribute and
may be generated automatically during attribute derivation. Preservation of an explicitly
provided label requires specific CSS adjustments; therefore, the following approach is
recommended:

If deriving L to ol or ul, and if a child LI structure element contains a Lbl structure element
as its first child, then:

B the ul or ol element derived from the parent L’s structure element has an additional
style attribute with value list-style-type:none. The processor ignores redefinition of
list-style-type attribute provided through the presence of CSS attributes as defined
in4.3.7.9, “CSS”

B Lblis mapped to span if it has only textual content (no other block level child
structure elements)

B Lblis mapped to div, if it contains other block level structure elements

If deriving L to dl, the Lbl structure element is derived to a dt element.

When deriving Lblin lists, the processor should ignore the presence of the Placement
attribute.

NOTE Introducing an additional span or div element for the label may affect formatting.
Processors typically compensate by applying additional styling to maintain the intended
layout, or by analyzing the semantic nature of the Lbl—for example, whether it contains
textual content, links, or other meaningful elements—and adjusting their behavior

accordingly.
EXAMPLE
PDF

<L> |

© 2025 PDF Association 21

PDF Association

 {
<Lbl> { - }

<LBody> { text 1}

}
HTML output

<ul style="list-style-type:none;">
-<div style="display:inline;">text 1</div></1i>

4.3.5.4.2 LblwithinaForm
If a Lbl structure element is contained in a Form structure element, then:

B Lblis mapped to div if it contains one or more of the following structure elements as
a direct child: Form, Figure, Formula or Caption
Lblis mapped to label otherwise. If the PDF 2.0 namespace is used, an additional for
attribute shall be added to the HTML label element (see 4.3.5.11.1, “Form field
processing”).

4.3.5.4.3 Lblasachild of Hn, Caption, TOCI
If a Lbl structure element is a child of a Hn, Caption or TOCI structure element, then:

B Lblis mapped to span if it has only textual content (no other block level child
structure elements)
B Lblis mapped to div, if it contains other block level structure elements

4.3.5.4.4 Lblas a child of other elements
If the Lbl structure element is a child of other elements it is derived to span element.

4.3.5.4.5 Aria attribute on Lbl

To convey the semantics of the Lbl element, the processor may add aria-label attribute
with textual information identifying the label, provided that such an ARIA attribute is not
already present (see 4.3.7.10, “ARIA roles™).

EXAMPLE
PDF

<H1>

<Lbl> {1.}

© 2025 PDF Association 22

PDF Association

Introduction

}
HTML output

<hl>
1.
Introduction

</hl>

4.3.5.5 Notes
HTML doesn’t have a specific element for representing note semantics. A similar effect is
usually achieved using css styling.

FENote structure element is derived to span if it’s an inline structure element and to div
otherwise.

NOTE 1 Relying solely on the presence of the Placement attribute is not the best practice.
The category of an element can be either an inline level element or a block level element,
depending on its context. For more information, refer to 1SO 32000-2, 14.8.3, and 14.8.4.1

To avoid invalid HTML, a processor may also remove the FENote element (with all its
children) from its position, then traverse up the tree to find the first parent that allows
inclusion of a derived div or span element. Once such a parent is found, insert the
element as a child of that parent, placing it at the correct position in the child order—
specifically as a sibling of the original (invalid) parent.

Processors may use a specific HTML element to represent notes, such as the small or footer
elements.

Additionally, the value of the NoteType attribute defined in Well-Tagged PDF (WTPDF),
8.2.5.14 Footnotes and Endnotes (FENote) is derived into the data-pdf-FENoteType attribute.

The Well-Tagged specification PDF mandates the presence of Ref entry on FENote, and the
processor may use the connection between note and content to generate an additional a
element to allow navigation.

4.3.5.6 Figure

If a Figure structure element is a direct or indirect child of one of Sub, P, Hn, Em, Strong,
or Span PDF structure elements it shall not be mapped to any HTML element and the
processor shall continue with its direct children, which shall themselves be mapped to
span or a. Attributes of the Figure structure element shall be included in the html element
identifying content and all respective span or a elements while properties shall only be
included in the html element identifying content.

NOTE 1 Requirement for the indirect child means that inline links containing figures are
properly derived.

© 2025 PDF Association 23

PDF Association

NOTE 2 Figures as children of P structure element containing links that enclose content are
derived into p HTML element containing a HTML element which contains img. The
requirements for the properties of Figure structure element are applied transitively to img.
Therefore, Alt property is derived to alt of the identified img.

EXAMPLE 1
PDF
<P> {
<Figure Alt="six-point star" (O=Layout BorderColor=[0 1 0])>
{
<Caption> {Figure Caption}
CONTENT [The actual image or illustration converted to
star.jpg during derivation]
}
}
HTML output
<p>
Figure Caption
<img alt="six-point star"
style="border-color:green;"
src="star.Jjpg"/>
</p>
EXAMPLE 2
PDF
<P> {
<Figure Alt="six-point star" (O=Layout BorderColor=[0 1 0])>
{
<Caption> {Figure Caption}
<Link> {
OBJR [link annotation]
CONTENT [The actual image or illustration
converted to star.jpg during derivation]
}
}
}
HTML output

© 2025 PDF Association 24

PDF Association

<p>
Figure Caption

<img alt="six-point star" style="border-
color:green; "src="star.jpg"/>

</p>

4.3.5.7 Formula
If a Formula structure element is an inline structure element, then it shall be mapped to a
span element. Otherwise, it shall be mapped to div.

If a Formula structure element contains a math structure element defined in MathML
namespace as a direct child (as per 4.3.2.3, “When the PDF structure element uses an
explicit namespace”), then associated files as defined in 4.6, “Associated file processing”
are not processed.

EXAMPLE 1

Math formula represented in the MathML namespace

PDF
<P> {
<Formula> {
<math> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>=</mo>
<mi>c</mi> </math>
}
}
HTML output

<p> <math> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>=</mo>
<mi>c</mi> </math> </p>

EXAMPLE 2
Chemical formula

PDF
<P> {
<Formula> {

CcO

© 2025 PDF Association 25

PDF Association

2

2

2

3

}
HTML output

<p> CO₂ + H₂0 = H₂CO₃
 </p>

4.3.5.8 Land TOC (lists)

4.3.5.8.1 Listwithin list

If an L (or TOC) structure element is a direct child of a L (or TOC) structure element, then
the child L (or TOC) element shall be output to HTML as the direct child of a newly created
li element containing a style attribute with the value “list-style-type: none”

EXAMPLE 1

PDF
<L (O=List ListNumbering=Ordered)> {
<L> {
 {Item 1.1}
}
 {Item 2}

}
HTML output

<li style="list-style-type: none;">

 Ttem 1.1</1i>

</1li>

© 2025 PDF Association 26

PDF Association

Item 2</1i>

EXAMPLE 2

PDF
<TOC> {
<Caption> {Table of Content}
<TOC> {
<Caption> {Tables}
<TOCI> {Table 1}

<TOCI> {Table 2}

HTML output

<div> Table of Content </div>

<li style="list-style-type: none;">
<div> Tables </div>

<1li> Table 1</1i>
<1i> Table 2</1i>

</1li>

4.3.5.8.2 L asdescription list

If an L structure element is derived to dl (see 4.3.7.4, “List standard structure attribute
owner”) then its child elements shall be derived as follows:

B Ll todiv
B Lbltodt
H LBody todd

EXAMPLE

© 2025 PDF Association

27

PDF Association

PDF
<L (O=List ListNumbering=Description)> {
 {
<Lbl> { First}
<LBody> { the first item}
}
 {
<Lbl> {Second}

<LBody> {the second item}

}

HTML output
<dl>
<div>
<dt>First</dt>
<dd>the first item</dd>
</div>
<div>
<dt>Second</dt>
<dd>the second item</dd>
</div>
</dl>

4.3.5.8.3 L within PorSub

If an L structure element is a direct child of a P or a Sub structure elements, the processor
shall close all the HTML elements until the first parent allows nested ol or ul or dl
elements. The derived ol or ul or dl will become a child of the parent, thereafter, repeating
the same structure with the first sibling of the L element.

EXAMPLE
PDF
<Part> {
<P> {
<Sub> {

Actual content before the list

© 2025 PDF Association 28

PDF Association

<L (O=List ListNumbering=Ordered) >

Actual content after the list

}
HTML output

<div>
<p>Actual content before the list</p>
. . .
<p>Actual content after the list</p>

</div>

4.3.5.9 NonStruct, Private and Artifact

If PDF structure elements of type NonStruct contain any HTML or CSS attributes, then
they shall be mapped to HTML div element. Otherwise, the NonStruct structure element
shall not be output to HTML, but the content they enclose (including child elements, if
any) shall be processed as though it were contained in the NonStruct structure element’s
parent structure element directly.

PDF structure elements of type Private or of type Artifact shall not be output, nor shall
any of their content or descendant elements.

4.3.5.10 Links and references

If the standard PDF structure element type is Link or Reference, then the HTML element
shall be considered as a, (i.e., an HTML anchor element). The processor shall identify the
destination from the annotation dictionary of the first object reference (OBJR) associated
with an annotation with a Subtype key whose value is Link

If the annotation dictionary has a Dest key, the value of href attribute for the HTML shall
come from the destination according to 4.3.5.10.1, “Destination”.

If the annotation dictionary has an A key, then the href attribute of the HTML shall be
determined based on action type according to 4.3.5.10.2, “URI action” or4.3.5.10.3, “
GoTo action”.

If a Link structure element is a direct child of a Reference structure element, then the
processor shall output only one HTML element with href set from the annotation
dictionary represented by the Link.

Suppose a Link or Reference structure element doesn’t contain an annotation object. In
that case, the processor may use the Ref entry, if present, to establish a connection
between other content and define href accordingly or omit the href entry. See 4.3.6.6,
“Ref entry”. Alternatively, the target can be identified from the enclosed content

© 2025 PDF Association 29

PDF Association

EXAMPLE
PDF

<P> { This is 1link
<Link> { www.pdfa.org }

}
HTML output

<p> This is link
 www.pdfa.org
</p>

4.3.5.10.1 Destination

For a structured destination (1SO 32000-2, 12.3.2.3 “Structure destinations”), the id from
that destination as created according to 4.3.6, “Structure element properties” shall be
used as the fragment identifier in the href attribute of the HTML element.

For explicit destination (1ISO 32000-2, 12.3.2.2 “Explicit destinations”), the processor shall
identify the first element on the destination page (see 4.4, “Processing of a content
element”) and use id from that element as created according to 4.3.6, “Structure element
properties” shall be used as a href attribute of HTML element. Processors may add
support for changing the particular view of the document by supporting various
destination types in an implementation-dependent manner.

4.3.5.10.2 URI action
If the annotation dictionary has an A key, and its value is an action of type URI, then the

value of the URI key shall be used as href attribute of HTML element.

4.3.5.10.3 GoTo action

If the annotation dictionary has an A key, and its value is an action of type GoTo, then the
href attribute of the HTML shall be determined from the structure destination defined by
SD key of the action dictionary as defined by 4.3.5.10.1, “Destination”. If SD key is not
present, then the value of the D key shall be used.

4.3.5.11 Forms
Form structure elements representing interactive fields are derived according to
4.3.5.11.1, “Form field processing”.

When Form structure element doesn’t represent an interactive form field but only conveys
visual representation if is derived according to 4.3.5.11.3, “Non-interactive forms”.

NOTE 1 HTML requires that form fields are always descendants of a form element, whereas
there is no notion of an equivalent structure element in PDF 2.0 standard structure
namespaces. Consequently, the HTML form element is inserted in a generic fashion that
ensures that any PDF structure element of type Form will always be derived to an
equivalent HTML form field that is a descendant of a form element.

© 2025 PDF Association 30

http://www.pdfa.org/
http://www.pdfa.org/

PDF Association

NOTE 2 It is possible to use PDF structure elements and attributes in the HTML namespace
to define forms and form fields that translate more directly into HTML elements and
element structures. If form-related PDF structure elements from the PDF 2.0 standard
structure namespace on one side and from the HTML namespace on the other side were
mixed inside the same document, the conversion result could be inconsistent.

4.3.5.11.1 Form field processing

If a structure element of type Form contains one object reference (OBJR) to a widget
annotation, the derivation algorithm is based on 4.4.8.3, “Widget annotations”, and other
content inside the PDF structure element of type Form, with special handling of content
inside PDF structure elements of type Lbl.

If a PDF structure element of type Form has descendants that are structure elements of
type Lbl, these Lbl structure elements shall be created as label elements, as defined in
4.3.2.1, “Processing PDF structure elements”. A for attribute shall be added to each label
element, whose value shall be the same as that of the id attribute of the HTML form field
element created according to 4.4.8.3, “Widget annotations”.

EXAMPLE

PDF
<Form> {
<Lbl>{Last name:}
OBJR [widget annotation of single line text field]

}
HTML output

<label for="bd43-05d-1le7">Last name:</label>

<input i1d="bd43-05d-11e7" type="text" name="lastname"
form="acroform id">

4.3.5.11.2 Form field processing for PDF structure elements from the HTML namespace
When using form field-related structure elements from the HTML namespace, no
processing as defined in 4.4.8.3, “Widget annotations” shall be carried out. All attributes
necessary for each HTML form field must be present as structure attributes in the HTML
namespace.

When using form field-related structure elements from the HTML namespace, structure
elements of type form shall be present as necessary to ensure that all form fields in the
derived HTML are descendants of a form element as required by HTML.

4.3.5.11.3 Non-interactive forms

If a Form structure element represents a non-interactive form and contains PrintField
attribute owner (as defined in ISO 32000-2 14.8.5.6 “PrintField attributes”) is derived into
figure element and its children are processed based on 4.4, “Processing of a content
element”.

© 2025 PDF Association 31

PDF Association

In the absence of an alternate description, the processor may use the value of Role and
Checked attributes to generate human-readable text that is used as alt attribute of the
derived element.

4.3.5.12 Code

In PDF, the Code structure element represents either a single line of code or a block that is
further divided into lines using Sub structure element. In HTML code element always
represents a single phrase or single line of code, and multiple lines are recommended to
be wrapped in pre element.

If the standard PDF structure element type Code contains Sub structure element as a
direct child, then itis derived into pre HTML element, and Sub structure elements shall be
mapped to code elements; otherwise, the Code structure element shall be mapped to
code.

EXAMPLE 1
PDF
<Code> {
<Sub>{ x = 3 }
<Sub>{ y = 7 }
<Sub>{ print(x + y)}
}
HTML output
<pre>
<code> x = 3 </code>

<code> y = 7 </code>

<code> print(x + y) </code></pre>

EXAMPLE 2
PDF
<P> {
The <Code>{print} function shows a message on the screen.
}
HTML output
<p>
The <code>print</code> function shows a message on the
screen.

© 2025 PDF Association 32

PDF Association

</p>

4.3.6 Structure element properties
Structure element properties convey data whose processing is critical to the complete
and accurate conveyance of semantic meaning.

NOTE It is important to note that well-tagged pdf files authored for deriving into HTML can
override values of structure element properties by the presence of html and css attribute
owners that are in no way interpreted in standard pdf rendering. It is the author’s
responsibility to make sure that the derived HTML represents the content the way the
author intended. It is also a valid use case to provide different visual and interactive
experiences when consuming pdf in the traditional way and as derived HTML.

4.3.6.1 General
If the structure element dictionary contains an ID entry, its value shall be used as the value
of the id attribute on the HTML element.

If a structured destination (see ISO 32000-2, 12.3.2.3 “Structured destinations”) references
the structure element dictionary and does not contain an ID entry, then a unique identifier
value (generated in an implementation-dependent manner) shall be used as the value of
the id attribute on the HTML element.

NOTE 1 This id is used when the Link annotation with the structure destination is
processed.

If the PDF structure element has any classes of attributes (via the C key in the structure
element dictionary), then those classes shall be used as the value for an attribute class on
the HTML element. If Cis an array, then the value of the class attribute shall be
constructed as a concatenation of classes separated by a space character. Additionally,
the processor shall output attributes that map to HTML properties associated with the
classes according to 4.3.7.2, “Deriving structure attributes to HTML attributes”.

If the PDF structure element has an A key in its structure element dictionary, then its
attributes shall be handled as described in 4.3.7, “Attributes”, and shall be output as
attributes of the HTML element or as inline styling properties.

NOTE 2 It is important to process classes of attributes before the attributes. 1ISO 32000-2
14.7.6.2 “Attribute classes” requires that if both the A and C entries are present and a given
attribute is specified by both, the one specified by the A entry takes precedence.

4.3.6.2 Lang

If the structure element dictionary contains a Lang entry and if the entry’s value is not an
empty string, then its value shall be used as the value of the lang attribute on the HTML
element.

4.3.6.3 Replacement text

If the structure element dictionary has an ActualText key (see ISO 32000-2, 14.9.4
“Replacement text”), its value shall be used as the content of the HTML element, and the
children of the PDF structure element shall be ignored.

© 2025 PDF Association 33

PDF Association

EXAMPLE 1

PDF
<P> {
Dru{k-}ker
}
HTML output
<p>Drucker</p>

NOTE the span element in derived HTML is only required if original Span element contains
additional attributes or properties

EXAMPLE 2

PDF
<p> {
<Formula Lang="de" ActualText="Der Satz des Pythagoras">{

$..$

}
HTML output

<p>
Der Satz des Pythagoras
<!-- span is derived from Formula structure element -->

</p>

4.3.6.4 Alternate description

When processing PDF structure elements of type Figure, whose structure element
dictionary has an Alt key (see ISO 32000-2, 14.9.3 “Alternate descriptions”), the Alt
property shall only be included in the HTML element identifying content as defined in
4.3.5.6, “Figure”.

When an Alt property is present on a Formula structure element or a math structure

element (in the MathML namespace), its value shall be used as the alttext attribute of the
derived math element.

EXAMPLE

PDF

<Figure Alt="six-point star"> {

© 2025 PDF Association 34

PDF Association

CONTENT [The actual image or illustration converted to
star.jpg during derivation]

}
HTML output

<figure> </figure>

4.3.6.5 Expansion text

If the structure element dictionary has an E key that is not an empty string (see ISO 32000-
2,14.9.5 “Expansion of abbreviations and acronyms”), then the HTML element shall be
abbr whose contents are the contents of the PDF structure element and a title attribute
whose value is the UTF-8 encoded value of the expansion text.

EXAMPLE 1
PDF
<P> {
 {Dr.}
Jones
}
HTML output

<p><abbr title="Doctor">Dr.</abbr> Jones </p>

When multiple properties are present, they should all be handled in the order of
importance

EXAMPLE 2

PDF
<P> {

<Figure ActualText="Dr." E="Doctor" Alt="Fancy drawing of
Dr.">

Jones

HTML output

<p><abbr title="Doctor">Dr.</abbr> Jones</p>

© 2025 PDF Association 35

PDF Association

4.3.6.6 Refentry

Well-Tagged PDF specification recommends the use of Ref entry to more closely associate
two structure elements and to provide referential information between source and target
structure elements.

The processor may choose to use this information and provide features that would allow
consumers to benefit from highlighting such an association in an implementation-
dependent way.

EXAMPLE: Preview popup of a destination while hovering over an element with Ref entry,
with the ability to navigate to the target element

4.3.7 Attributes

Additional information is often associated with individual PDF structure elements through
the use of structure attributes. In some cases, the presence of a specific attribute changes
the selected html element, but in most cases, PDF structure element attributes are
mapped to HTML attributes or CSS properties.

4.3.7.1 General

Only those standard structure attributes specifically referenced in this document shall be
processed. Additional format-specific attributes and owners may be present, and the
processor may output them.

The O key (see ISO 32000-2, “Table 376 - Standard structure attribute owners”) and its
value shall not be output. If the O key has a corresponding value of NSO, then the NS key
and its value shall only be processed if the NS key references the same Namespace
Object as the target element. In this case, the attribute should be interpreted as an
attribute in no-namespace with the name given by the attribute key.

Whenever an array of attributes is defined, the processor shall process attributes in the
following sequence:

User Properties

List attribute owner

Table attribute owner

Layout attribute owner
PrintField attribute owner
HTML attribute owner

CSS attribute owner

ARIA attribute owner

NSO with MathML namespace

N s WD

NOTE 1 The sequence guarantees that the most significant attributes are processed last.

Well-tagged pdf files authored for derivation into HTML interpret HTML and CSS
attributes with higher priority than, for example, Layout attributes or structure
element properties. That is intentional and gives the author the ability not just to

© 2025 PDF Association 36

PDF Association

enrich the pdf with html specific constructs, but also to override the existing
aspects of pdf focused on traditional pdf consumption in fixed layout devices or
with AT with more reliable html tags, attributes, and css properties.

When deriving attribute values from PDF to HTML or CSS, the necessary conversion
to lowercase shall be applied, and only those valid in html shall be processed.

NOTE 2 If an attribute isn’t present on a structure element, it may either be inherited when
the inheritance is applicable for such attribute or considered as having a default value. The
CSS and HTML attributes are not interacting with other attribute owners. It is therefore
recommended not to rely on inheritance or default values for attributes and explicitly
define attributes on structure elements.

4.3.7.2 Deriving structure attributes to HTML attributes

For each PDF structure element attribute mapping to an HTML attribute, the processor
shall use the dictionary key as the name of an attribute on the HTML element and the
value of the key (converted into a string using common methods) as the value of that
attribute.

It is expected that the representation of boolean HTML attributes matches the
requirements from HTML, and values provided in PDF are either an empty string or a value
that is an ASCII case-insensitive match for the attribute's canonical name, with no leading
or trailing whitespace.

EXAMPLE
PDF

<Form (O=HTML-5.00 disabled=disabled) > { OBJR }

HTML output

<input form="acroform id" disabled=disabled/>

4.3.7.3 Deriving structure attributes to CSS properties

For each attribute derived to a CSS property, the processor shall create a CSS declaration
using the dictionary key as the property and the value of the key (converted into a string
using common methods) as the property value.

A style attribute for the HTML element shall be created, and all CSS declarations in the
current PDF structure element shall be concatenated into a string, delimited by
semicolons as necessary, and the string shall be used as the value of the style attribute.

4.3.7.4 List standard structure attribute owner

If the list is ordered, the L shall be derived to ol. If the value of the ListNumbering
attribute is Description, the L shall be derived to dl (see 4.3.5.8.2, “L as description list”),
otherwise, it shall be derived to ul.

© 2025 PDF Association 37

https://infra.spec.whatwg.org/#ascii-case-insensitive

PDF Association

The processor may decide to derive other values of the ListNumbering attribute to the
list-style-type CSS property if list-style-type is not already present on a structure
element as a CSS owner attribute (see 4.3.7.9, “CSS”). In particular

values: Disc, Circle, Square can be derived to CSS values disc, circle, square for unordered
lists and value Decimal, UpperRoman, LowerRoman, UpperAlpha, LowerAlpha can be
derived to the corresponding CSS values decimal, upper-roman, lower-roman, upper-
alpha, lower-alpha for ordered lists.

The attributes ContinuedList and ContinuedFrom shall not be processed into HTML
unless an implementation is provided (e.g., equivalent CSS or JavaScript) to
accommodate their semantics.

NOTE To achieve equivalent effects in an HTML, the author can provide equivalent CSS or
JavaScript mechanisms.

4.3.7.5 Table standard structure attribute owner

“Table 2: Mapping Table structure type attribute owners to HTML attributes” shows the
mapping from the standard table attributes to HTML attributes that shall be used by the
processor when deriving Table structure element types to corresponding html elements.

“Table 3: Mapping standard layout attributes of Table structure elements to CSS
properties” shows the mapping from the standard layout attributes belonging to Table
structure element to CSS properties that shall be used by the processor when deriving
Table structure element types to corresponding html elements.

Table attributes not listed in Table 2 or Table 3 shall not be processed.

Table 2: Mapping Table structure type attribute owners to HTML attributes

Standard Table attribute | HTML attribute (output)

ColSpan colspan
RowSpan rowspan
Headers headers

NOTE The mapping of the Headers attribute relies
on the fact, that existing ID attributes for PDF
structure elements are mapped to the id attribute of
the th or td elements derived from TH or TD
structure elements.

Scope scope

Short abbr

© 2025 PDF Association 38

PDF Association

Table 3: Mapping standard layout attributes of Table structure elements to CSS properties

Standard Table attribute | CSS property (output)

TBorderStyle border-style

Apply any necessary conversion to lowercase

TPadding padding

Apply any necessary conversion to pixels

EXAMPLE
PDF
<Table> {
<TR>
<TH (O=Table RowSpan=2 TBorderStyle=Dotted)> { Age }
<TH (O=Table ColSpan=2 TBorderStyle=Dotted)> { Names}
}
<TR>
<TH> { John }
<TH> { Bob }
}
<TR>
<TH> { 25-30 }
<TD> { 100 }
<TD> { 500 }
}
}
HTML output
<table>
<tr>

<th style="border-style:dotted; rowspan=2">Age</th>
<th style="border-style:dotted; colspan=2">Names</th>

</tr>

© 2025 PDF Association

PDF Association

<tr><th>John</th><th>Bob</th></tr>
<tr><th>25-30</th><td>100</td><td>500</td></tr>
</table>

4.3.7.6 Layoutstandard structure attribute owner

The TextPosition attribute specifies whether a PDF structure element is subscript or
superscript.

o Ifthe TextPosition attribute is Sup, the additional sup HTML element shall be
added as a direct child of the derived element.

o Ifthe TextPosition attribute is Sub, the additional sub HTML element shall be
added as a direct child of the derived element

“Table 4: Mapping layout standard structure attribute owner to CSS properties” shows the
mapping from the standard layout attribute to CSS properties that shall be used by the
processor when deriving PDF structure element types to corresponding HTML elements.

Layout attributes not listed in Table 4 shall not be processed.

Table 4: Mapping layout standard structure attribute owner to CSS properties

Standard Layout CSS property (output)
attribute
Placement If value is Block or Inline, the derived CSS property is display

and values are block or inline

If value is Before, Start or End, the derived CSS property is
float with values left or right

WritingMode writing-mode

Apply any necessary conversion to CSS property values
from PDF names

BackgroundColor background-color

Apply any necessary conversion to HTMLRGB values

BorderColor border-color

Apply any necessary conversion to HTML RGB values

© 2025 PDF Association 40

PDF Association

Standard Layout CSS property (output)
attribute
BorderStyle border-style

Apply any necessary conversion to lowercase

BorderThickness

border-width

Apply any necessary conversion to pixels

Padding

padding

Apply any necessary conversion to pixels

Color

color

Apply any necessary conversion to HTML RGB values

SpaceBefore

(interpreted)

There is no equivalent CSS property; the processor should
use a combination of display and margin-top properties to
simulate the expected behavior

SpaceAfter

(interpreted)

There is no equivalent CSS property; the processor should
use a combination of display and margin-bottom properties
to simulate the expected behavior

Startindent

(interpreted)

There is no equivalent CSS property; the processor should
use a combination of display and margin-left properties to
simulate the expected behavior

Endindent

(interpreted)

There is no equivalent CSS property; the processor should
use a combination of display and margin-right properties to
simulate the expected behavior

© 2025 PDF Association

41

PDF Association

Standard Layout CSS property (output)
attribute
TextIindent text-indent
Apply any necessary conversion to pixels
TextAlign text-align
Apply necessary conversion to CSS property values from
PDF names
TPadding padding
Apply any necessary conversion to pixels
LineHeight line-height

Apply necessary conversion to CSS property values from
PDF names

BaselineShift

baseline-shift

Apply any necessary conversion to pixels

TextDecorationColor

text-decoration-color

Apply necessary conversion to HTML RGB values

TextDecorationThickness

There is no equivalent CSS property, therefore the
processor should use other properties (e.g., border-width)
to achieve the same visual and semantic expression

TextDecorationType

text-decoration
A LineThrough value shall be derived to line-through

Apply necessary conversion to lowercase

RubyAlign

ruby-align

Apply necessary conversion to CSS property values from
PDF names

© 2025 PDF Association

42

PDF Association

Standard Layout CSS property (output)
attribute
RubyPosition ruby-position

Apply necessary conversion to CSS property values from
PDF names

4.3.7.7 PrintField standard structure attribute owner

If PrintField attribute owner is present on Form structure element, then such structure
element is handled as non-interactive and is derived according to 4.3.5.11.3, “Non-
interactive forms”.

4.3.7.8 HTML

If the value of the O key of an attribute object dictionary begins with the (case-sensitive)
string “HTML-”, then the dictionary shall be considered as containing HTML attributes and
processed according to 4.3.7.2, “Deriving structure attributes to HTML attributes”.

4.3.7.9 CSS

If the value of the O key of an attribute object dictionary begins with the (case-sensitive)
string “CSS-”, then this dictionary shall be considered as containing CSS attributes and
processed according to 4.3.7.2, “Deriving structure attributes to HTML attributes”.

EXAMPLE

PDF
<H1 (0=CSS-3.00 color=red font-size=12px) > { Heading 1 }
<P (0=CSS-3.00 column-count=3) > { long paragraph }

HTML output
<hl style="color: red; font-size: 12px;">Heading 1</hl1>

<p style="column-count:3"> long paragraph </p>

4.3.7.10ARIA roles

If the value of the O key of an attribute object dictionary begins with the (case-sensitive)
string “ARIA-”, then this dictionary shall be considered as containing ARIA attributes and
processed according to 4.3.7.2, “Deriving structure attributes to HTML attributes”.

© 2025 PDF Association 43

PDF Association

4.3.7.11 User Properties

User properties are derived into HTML attributes with names starting with data-pdf-up-

followed by the name of the user property (identified by N entry). All characters contained
in the value of the N entry that are not allowed in the attribute names shall be replaced by

the underscore character (‘_’).

For each user property (each entry in P array of attribute object dictionary) the processor

shall create a set of HTML attributes as follows:
data-pdf-up-name-V with the value of the V entry
data-pdf-up-name-F with the value of the F entry
data-pdf-up-name-H with the value of the H entry
EXAMPLE

PDF

100 0 obj
<< /Type /StructElem
/S /Figure
/P 50 0 R
/A << /O /UserProperties $Attribute object
/P [%Array of user properties
<</N (Part Name) /V (Framostat) >>

<</N (Supplier) /V (Just Framostats) /H true >> $Hidden
attribute

<</N (Price) /V -37.99 /F ($37.99) >> SFormatted wvalue

>>
>>
endob]j
HTML output
<figure
data-pdf-up-Part Name-V = "Framostat"
data-pdf-up-Supplier-V = "Just Framostats"

data-pdf-up-Supplier-H = true

data-pdf-up-Price-V = -37.99

© 2025 PDF Association

44

PDF Association

data-pdf-up-Price-F = "$37.99" >

 </figure>

4.3.7.12 Others

Processing of attributes with any other value of the O key is implementation dependent
and therefore beyond the scope of this document. To achieve consistent output,
implementations should not override attributes defined in 1ISO 32000-2.

4.4 Processing of a content element

The child elements of structure elements that reference content items consist of the
various types of PDF graphic objects (ISO 32000-2, 8.2 “Graphics objects”): path, text,
XObiject, inline image, and shading. Processors shall handle content items based on the
use case:

B Where visual fidelity is important (infographics, charts, etc.) a processor shall
process content items as a group by either rasterizing all items and incorporating
the result as a single raster image or by converting to SVG and including the output
in the HTML. An example of such usage might be content elements within Figure
structure element.

NOTE Converting vector graphics to SVG may result in a different visual appearance in the
presence of transparency due to conceptual differences between the definition of PDF
graphics operators (fill or stroke) and SVG operations controlled by the paint-order

B For general purposes, each content element object type shall be processed
according to the provisions of this subclause.

Additionally, every first processed content element on a page shall be identified via id
attribute on its parent HTML element, whose value will be constructed as PDF-Page-X
where X is the actual page number. The processor may add the additional css property
page-break-before to the HTML element.

NOTE Processing content items in reading order as defined by structure may resultin a
different visual representation than general PDF rendering, regardless of the selected
method of handling content items. There is no guarantee that tagging would respect the
order in which objects are rendered on a page.

4.4.1 Paths

A processor should choose one of the following methods of handling a content element
that represents one or more path objects:

© 2025 PDF Association 45

PDF Association

B rasterize the paths and then incorporate it into the HTML as a single raster image
(see 4.4.3, “Image XObjects and inline images”), or
B convert to SVG and include it either directly in the HTML or via an img element, or

NOTE Converting vector graphics to SVG may result in a different visual appearance in the
presence of transparency due to conceptual differences between the definition of PDF
graphics operators (fill or stroke) and SVG operations controlled by the paint-order
attribute.

B represent it as a canvas object, or
B using CSS styles.

If the paths are irrelevant to the reuse application, the processor may not to output path
objects.

4.4.2 Text
The text of the structure content element shall be converted to UTF-8 (see 4.2.1, “Head”)
and derived as the content of the HTML element.

4.4.3 Image XObjects and inline images

The image content shall be derived into an img HTML element. The width and height
attributes on the img element shall be present and shall represent the logical size of the
image as it would be displayed when rendering the PDF page at 100%, assuming a default
viewing distance of an arm’s length and page sizes typically used for reading at arm’s
length.

NOTE 1 According to HTML, width and height are specified without units and imply pixels
(px). Pixels are defined in “CSS Values and Units Module Level 3” as 1/96 inch at a viewing
distance of an arm’s length (28 inch or 0.712 m). The values for the width and height
attributes do not have to match the actual number of pixels in the horizontal and vertical
direction in the image file. If the ratio between the width and height attributes differs from
the actual number of pixels in the horizontal and vertical direction in the image file, the
image will be distorted accordingly when rendered.

How image data is encoded in PDF differs in many regards from how image data is
encoded in file formats such as GIF, PNG, or JPEG, or in SVG. When converting from PDF
image data to an OWP-supported file format, a processor should choose the most suitable
file format and should take into account the following aspects:

B the bit depth, whether by not using GIF or using dithering or other mechanisms

B the colour appearance, whether by converting to a device colour space that matches
the rendering system’s or device’s characteristics or by embedding a suitable ICC
profile

B the compression; using lossy compression only if no additional loss of information is
incurred

B the effect of any Mask or SMask entries applicable to the image data in the PDF

Image XObjects that contain an ImageMask entry with a value of true shall be encoded
such that the current colour in the current graphic state is taken into account, and the

© 2025 PDF Association 46

PDF Association

masking effect shall be represented appropriately in the file format to which the image is
converted.

If the processor is unable to convert the data, it shall place some form of placeholder
image, of the same logical (display) size, in the output HTML.

NOTE 2 This ensures that the HTML will at least lay out the same way as it would if the
image were present.

The value of the src attribute on the output img element shall be the URL to the image
data that the processor has prepared.

NOTE 3 Since the handling of the image data is implementation-dependent, the URL can
be any valid URL, including absolute (with or without prefix) or data URLs (RFC 2397).

4.4.4 Form XObjects

A processor shall process a content element that represents a Form XObject as a grouping
of other elements. Each of those elements shall be processed as per 4.4, “Processing of a
content element”.

4.4.5 Shadings
A processor should choose one of two methods of handling a content element that
represents a shading:

B rasterize the shading and then incorporate it into the HTML as a single raster image
as per 4.4.3, “Image XObjects and inline images”, or

B process the shading as a vector element (path) and then address as per 4.4.1, “
Paths”.

If the shadings are irrelevant to the reuse application, the processor may not output
shadings.

4.4.6 Artifacts
The derivation algorithm intentionally ignores artifacts not contained in the structure tree
(see 4.3.5.9, “NonStruct, Private and Artifact”).

4.4.7 Handling marked content sequences

4.4.7.1 Lang attribute in a marked content sequence

When a marked content sequence contains the Lang attribute, the content enclosed by
this marked content sequence shall be enclosed in a span element having a lang attribute
whose value is the UTF-8 encoded value of the Lang attribute.

4.4.7.2 ActualText attribute in a marked content sequence

When a marked content sequence contains the ActualText attribute, the content
enclosed by this marked content sequence shall be replaced by the UTF-8 encoded value
of the ActualText attribute.

© 2025 PDF Association 47

PDF Association

In contrast to other attributes, the ActualText serves as a textual replacement of the
content, and an additional span element is unnecessary unless the marked content
sequence contains a combination of multiple attributes.

EXAMPLE
PDF
<P> {
The wavelength is commonly represented by
/Span <</ActualText "lambda" /Lang "el">> A
}
HTML output

<p> The wavelength is commonly represented by lambda </p>

4.4.7.3 Alt attribute in a marked content sequence

When a marked content sequence contains the Alt attribute, the content enclosed by this
marked content sequence shall be enclosed in a span element having an alt attribute
whose value is the UTF-8 encoded value of the Alt attribute.

4.4.7.4 E attribute in a marked content sequence

When a marked content sequence contains the E attribute, the content enclosed by this
marked content sequence shall be enclosed in an abbr element having a title attribute
whose value is the UTF-8 encoded value of the E attribute.

4.4.7.5 Multiple attributes in a marked content sequence

When a marked content sequence contains more than one of the Lang, ActualText, Alt or
E attributes, only one span element shall be created. If the E attribute is one of these
attributes, the abbr element shall be created inside the span element, with the content
inside the marked content sequence or, in the case where an ActualText attribute is
present, the UTF-8 encoded value of the ActualText attribute as its content.

4.4.8 Processing of an object reference (OBJR)

4.4.8.1 XObjects
Object references in structure elements of type XObject shall be processed according to
4.4.4, “Form XObjects”.

4.4.8.2 Annotations (other than of type Link and Widget)
Handling of annotations other than Links and Fields/Widgets will be addressed in a future
version of this specification.

NOTE All other annotation types are out of scope for this document.

© 2025 PDF Association 48

PDF Association

4.4.8.3 Widget annotations

Object references in structure elements of type Form reference widget annotations. Based
on the type of the form field it belongs to, a widget annotation will be processed
differently.

HTML provides different types of elements for different types of form fields, such as
button, input, select, and textarea, which are collectively referred to as HTML form
fields.

Widget annotations that are invisible or hidden, have a width or a height of 0 (zero) or are
completely outside the CropBox - or in the absence of the CropBox, completely outside
of the MediaBox - of the page on which they are present, or are not present on any page,
shall be processed with CSS property display set to none

When constructing the html elements from Form structure element and associated
widget annotation, the processor uses different sources of information. The processing
order shall guarantee that the derived HTML represents the author’s intent, which may
override the functionality provided in the pdf presentation.

Information shall be processed in the following order:

Structure element properties
Widget annotation attributes
Layout attribute owner
HTML attribute owner

CSS attribute owner

ARIA attribute owner

oA W

NOTE 1 The order guarantees that the most significant attributes are processed last and
therefore gives authors the ability to override standard AcroForm functionality with html
specific constructs more suitable for consumption in HTML based environment

4.4.8.3.1 Mapping widget annotations to HTML
Widget annotations shall be mapped to one of the following HTML elements. Additional
HTML attributes and inner HTML shall be derived as defined in the following tables.

B button (see “Table 5: Mapping widget annotations to button HTML elements”)

B input (see “Table 6: Mapping widget annotations to input HTML element”)

B textarea (see “Table 7: Mapping widget annotations to the textarea HTML element”)
B select (see “Table 8: Mapping widget annotations to select HTML element”)

© 2025 PDF Association 49

PDF Association

Table 5: Mapping widget annotations to button HTML elements

Type of field type Additional attributes
attribute
Push button field button
Submit button (Push submit Map URL in Fin SubmitForm action to
button with A (action) formaction attribute
entry where the S .
y .) Map GetMethod flag to formmethod attribute
(subtype) entry's value is .
) with value get or post
SubmitForm);
The ExportFormat flag
shall be set to HTML
Reset button (Push reset
button with A (action)
entry with the S (subtype)
entry's value is
ResetForm)
Import-data button (Push | button button
button _Nlth A (action) NOTE Import-data is out of scope for
entry with the S (subtype) this document; if encountered it is
entry's value is processed like a regular Push button
ImportData) field
Signature field button Validation of signatures happens on the PDF

and only final status of the digital signature
validation is derived into actionable message
in implementation-dependent way.
EXAMPLE

<button

onClick="alert ('Digital signature is
Valid') ">

</button>

NOTE: Invisible digital signatures are not subject of
tagging. The processor may include validation

© 2025 PDF Association

50

PDF Association

Type of field

type Additional attributes

attribute

information of those digital signatures in
implementation-dependent way.

If the derived HTML element is button, then inner HTML shall be created with

B N appearance stream per 4.4, “Processing of a content element”
B CAentry from the MK dictionary

Table 6: Mapping widget annotations to input HTML element

Type of field

type
attribute

Additional processing

Check box button field

checkbox

If an Opt entry is present, map the
applicable entry to the value
attribute.

If an Opt entry is not present, map the
name in the Widget's normal
appearance stream (as defined by a
value other than Offin the N
dictionary of the widget's AP
dictionary), to the value attribute.

If the AS entry’s value is not Off, set
the checked attribute

Radio button field

NOTE: The flag
RadiosInUnison is
not supported.

radio

If an Opt entry is present, map the
applicable entry to the value
attribute.

If an Opt entry is not present, map the
name in the Widget's normal
appearance stream (as defined by a
value other than Offin the N
dictionary of the widget's AP
dictionary), to the value attribute.

© 2025 PDF Association

51

PDF Association

Type of field type Additional processing
attribute

If the AS entry’s value is not Off, set
the checked attribute

Single line text field text If the RichText flag is not set and RV
is not present, map V to value
Map MaxLen to maxlength
Map DoNotSpellCheck to spellcheck
If the RichText flag is set and RV is
present, additional inner HTML from
the RV entry shall be created.

Password text field (i.e. Single password Map V to value

. i ith th

line text field with the . Map MaxLen to maxlength

Password flag set; multiline

text fields with Password flag Map DoNotSpellCheck to spellcheck

set are not supported, and will

be mapped as single line text

fields)

File select text field (i.e. Single | file Map V to value

line text field with th

|r1e exnedw © . Map MaxLen to maxlength

FileSelect flag set; multiline

text fields with FileSelect flag Map DoNotSpellCheck to spellcheck

set are not supported, and will

be mapped as single line text

fields)

Choice field with Edit flag set text Map V to the value

Add list attribute referring to an id of
the associated datalist element (see
below)

Create sibling datalist with a unique
id property

© 2025 PDF Association

52

PDF Association

Type of field type Additional processing
attribute
Map Opt array values to inner option
elements inside datalist
NOTE As of today, datalist is
not supported in IE9 or
earlier or in Safari.
Table 7: Mapping widget annotations to the textarea HTML element
Type of field | Additional processing

Multiline text
field

Map MaxLen to maxlength
Map DoNotSpellCheck to spellcheck

If RichText flag is set and RV is present, inner HTML from RV entry shall
be created; otherwise create inner HTML from V entry

Table 8: Mapping widget annotations to select HTML elements

Type of field | Additional processing
ListBox Setsizeto 3
Combo

If the derived HTML element is select, then:

o If Multiselect field is defined, add multiple HTML element

e Map the entries from the Opt entry of the form field to option inner HTML

e Map VandIto the attribute(s) selected in the corresponding option element(s)

4.4.8.3.2 Widget annotation attributes
Certain widget annotation attributes (see ISO 32000-2, 12.5.6.19 “Widget annotations”), if
present, shall be added to the HTML form field element:

© 2025 PDF Association

53

PDF Association

As local style attributes, using suitable CSS declarations as noted in “Table 4: Mapping
layout standard structure attribute owner to CSS properties”:

B highlighting mode (H entry)

B border style (BS entry)

B border color (BC entry in the MK dictionary)

B background color (BG entry in the MK dictionary)

B text alignment as defined in the Q entry if applicable for the derived HTML element

As HTML attributes:

B ReadOnly (Ff entry) mapped to readonly

B Required (Ff entry) mapped to required

B The fully qualified form field name (as defined in ISO 3200-2, 12.7.4.2 “Field names”)
mapped to name

4.5 ECMAScript

To achieve an equivalent experience in HTML as when processing forms in the PDF
context, the processor shall derive embedded ECMAscripts into HTML javascript when
deriving Widget annotations into HTML form fields. ECMAScript for PDF (see 1SO 21757-1)
defines the set of static and dynamic objects available to PDF.

The recommended way is to develop a JavaScript library that provides implementations
of the ECMAScript objects. The implementation details are not part of this specification;
it's up to the developer to ensure the expected behavior. See “Annex B: ECMAscript
derivation guidance” for examples of implementation.

4.6 Associated file processing

4.6.1 General

Each associated file’s file specification dictionary may either refer to an embedded file
stream or an external URL-based reference. If the file specification dictionary contains an
FS key with a value of URL and does not contain an EF entry, then it shall be handled as in
4.6.2, “URL References” as described in all sub-clauses of 4.6, “Associated file processing”.
If the file specification dictionary contains an EF entry, then it should be processed as
“Embedded Files” as described in all sub-clauses of 4.6, “Associated file processing”. The
processor shall ignore all other file specification dictionaries.

While it is recommended to process associated files as described in this chapter, the
implementer may decide not to do so, or limit implementation only to certain media types
due to security concerns. See “Annex A: Security implications”.

© 2025 PDF Association 54

PDF Association

4.6.2 URL References

For URL References, the value of the F entry in the associated file’s file specification
dictionary is the URL that shall be used to refer to the external services. URL References
shall not target local files nor make use of the file URL scheme.

NOTE 1 File URL schemes are specified in RFC 1738, Uniform Resource Locators (URL). The
prohibition of file URL schemes implies that it is not possible to reference local files.

For Embedded Files, the URL shall be the value of the UF entry from the associated file’s
file specification dictionary.

NOTE 2 This requirement ensures that resources and associated files can reliably refer to
each other, for example, CSS referring to an image to be used as a background.

4.6.3 Mediatypes

The handling of an associated file, whether it is a URL Reference or an embedded file shall
be based on its media type.

For URL References, the filename extension of the URL (see 4.6.2, “URL References”) shall
be used in conjunction with “Table 9: Media types supported by embedded files” to
determine the media type of the associated file.

For embedded files, the media type shall be determined by the value of the Subtype key
of the embedded file stream dictionary that is the value of the EF key of the associated
file’s file specification dictionary.

“Table 9: Media types supported by embedded files” lists the known media types, their
filename extensions, what each represented, and which of the following sub-clauses
provides more information about processing it.

If the file extension of the associated file is not one of the known extensions
corresponding to the media types specified in “Table 9: Media types supported by
embedded files” then the processor may process it or ignore it as it deems appropriate. A
processor may support additional filename extensions and/or media types beyond those
in the table.

Table 9: Media types supported by embedded files

Media types Filename Type of object | Sub-
extensions clause
text/html application/xhtml+xml .htm, .html, .xhtml [HTML or 4.6.4.2
XHTML
text/css .CSS CSS 46.4.3

© 2025 PDF Association 55

PDF Association

Media types Filename Type of object | Sub-
extensions clause

text/javascript Js JavaScript 4.6.4.4

application/javascript

image/jpeg image/png image/gif jpg, .jpeg, .png, .gif | Images 4.6.4.5

image/svg+xml .SvVg SVG 4.6.4.6

application/mathml+xml xml, .mathml MathML 4.6.4.7

4.6.4 Handling media types
4.6.4.1 General

When processing a structure element with an associated file, in some cases the associated

file will replace the otherwise generated HTML element while in others it will be additive

and only replace the content the structure element is referencing:

B |f the value of the AFRelationship key in the associated file’s file specification
dictionary is Alternative then the associated file serves as a replacement and all
children of the structure element shall be ignored.

B If the value of the AFRelationship key in the associated file’s file specification
dictionary is Supplement then the associated file serves as a supplemental and after
processing the associated file the processor shall continue with processing children
of the structure element ignoring all the direct content items.

NOTE The distinction is that alternative representations replace the structure element
itself together with all the content items, substructure, and attributes assigned to structure
element. The supplement would only replace content items assigned with the structure
element. The structure element, its attributes, and substructure items are the subject of

derivation.

EXAMPLE

PDF

<Figure AF with Supplement containing apple.png data> {

<Caption> {Apple}

© 2025 PDF Association

56

PDF Association

CONTENT [The actual image or illustration converted to
apple.jpg during derivation]

}
<Figure AF with Alternative containing orange.png data> {
<Caption> {Orange}

CONTENT [The actual image or illustration converted to
orange.jpg during derivation]

HTML output
<figure>
<figcaption>Apple</figcaption>

</figure>

In both cases, all requirements for attribute processing (see 4.3.7, “Attributes”) shall
apply.

NOTE This enables an author to provide specific attributes on the output HTML elements
by having them present on the PDF structure element.

Associated files with a value other than Alternative or Supplement for the AFRelationship
key in the associated file’s file specification dictionary may be ignored; the processor shall
continue with children of the structure element.

Multiple associated files shall be processed in the order in which they are stored in the
array of the AF key.

For security reasons, processors may choose to mitigate risks by ignoring categories of
Associated Files.

4.6.4.2 HTML

If the associated file is a URL Reference, then the processor shall add a link element to the
head element of HTML output, with attributes of rel (with a value of import) and href (with
avalue thatis the URL).

If the associated file is an Embedded File then the contents of the associated file’s
embedded file stream shall be added directly to the output HTML stream, taking the place
of the structure element that would normally have been generated.

© 2025 PDF Association 57

PDF Association

NOTE This mechanism allows direct injection of an associated file of type HTML into the
output HTML stream. It is therefore expected that the associated file is not a complete
HTML file, but a portion that follows HTML syntax.

4.6.4.3 CSS
If the associated file is either a URL Reference or an Embedded File of type CSS, then the
processor shall add to the output HTML the definition of internal or external CSS by

B adding immediately before the referencing HTML element, a style element, whose
contents shall consist of either
= content of the target file
» or an @import declaration with a value of the URL.
B or using an link element

EXAMPLE 1

<style>@import url (specialtable.css);</style>

EXAMPLE 2
<style>
hl {
color: maroon;
margin-left: 40px;
}
</style>
EXAMPLE 3

<link rel="stylesheet" type="text/css" href="specialtable.css"
</link>

4.6.4.4 JavaScript

If the associated file is either a URL Reference or an Embedded File of type JavaScript,
then the processor may add to the output HTML, immediately after the referencing HTML
element’s closing tag, a script element with the type attribute whose value is
“text/javascript” and either:

B an attribute of src whose value is the URL and no content; or
B by providing the content of the target file as the content of the script element.

EXAMPLE 1

<script type="text/Jjavascript" src="specialtable.js"> </script>

EXAMPLE 2

© 2025 PDF Association 58

PDF Association

<script type="text/javascript">

document.getElementById ("demo") .innerHTML = "Hello JavaScript!";
</script>

If the structure element with the associated file attached derives to script in the HTML
namespace (http://www.w3.0rg/1999/xhtml) then the HTML element shall be script. All
children of the structure element shall be ignored.

4.6.4.5 Images

To incorporate images into the HTML output, regardless of whether the associated file is a
URL Reference or an Embedded File, an img element shall be added to the HTML output
with a src attribute whose value is the URL or a URL constructed from data provided by
the associated file

4.6.4.6 SVG

To incorporate SVG into the HTML output, regardless of whether the associated file is a
URL Reference or an Embedded File, an img element shall be added to the HTML with an
attribute of src whose value is the URL or a URL constructed from data provided by the
associated file. If the structure element has a BBox structure attribute (of any owner or
namespace), then the height and width of that BBox shall be written out, respectively, as
height and width attributes on the img element. These height and width attributes
should be determined as described in 4.4.3, “Image XObjects and inline images”.

4.6.4.7 MathML
If the associated file is an Embedded File containing MathML then the contents of its
embedded file stream shall be added directly to the HTML output.

NOTE Since MathML is not supported by all user agents, a conforming processor may need
to take additional steps to ensure that it is presented as the author expected.

EXAMPLE

PDF
<P> { The area of a circle 1is
<Formula AF with Supplement containing mathml data> {
CONTENT [@1 * r ©~ 2]

<Lbl> {1.}

}
HTML output

<p>
The area of a circle is
 <math xmlns="http://www.w3.0rg/1998/Math/MathML">

© 2025 PDF Association 59

PDF Association

<mi>π<!'-—- m —-></mi>
<mo>⁢<!-- ⁢ --></mo>
<msup>

<mi>r</mi>

<mn>2</mn>
</msup>

</math>
 1.

</p>

© 2025 PDF Association

60

PDF Association

Annex A: Security implications
(informative)

There are serious security concerns when it comes to the derivation of PDF files to HTML.
PDF structures may contain information that can take advantage of the derivation process
and embed malicious code into derived HTML. One major concern is the fact that PDF files
may contain such code, and the process of derivation defined in this document does not
guarantee full control over the output HTML. In the case of a public service that allowed
users to upload PDF files to experience in HTML form through derivation, an attacker
could leverage this case by uploading a crafted PDF; derivation in itself does not prevent
the creation of malicious HTML.

Examples of such scenarios may include:

B Embedded JavaScript could access a whole web page if the PDF is derived into a
<div>, facilitating the delivery of malicious information
B JavaScript could access cookies

It is therefore the responsibility of the developer to recognize security risks in each specific
implementation. While using derivation in an enclosed environment where the developer
controls the HTML viewing system, the risk might be considered as low. In cases such as,
allowing users to upload random PDF files to be served as HTML to other users or systems,
the developer should clearly apply stringent processing requirements.

© 2025 PDF Association 61

PDF Association

Annex B: ECMAscript derivation guidance

(normative)

It is not in the scope of this document to define precisely how PDF ECMAscript shall be
derived into JavaScript libraries for use with HTML. In this Annex we will provide guidance
and examples focusing on the most common functionality.

EXAMPLE app object represents the application. In a desktop environment, the
application works with several open documents available through activeDocs property or
requires interactivity with the end-user through the alert method. Desired functionality
might be different in an HTML environment, and activeDocs method could always return
1, and alert method could be implemented with window.alert() or with console.log()
function.
A minimal app implementation could look like the following code:

var app = new Object ()

//properties

app.viewerVersion = 1;

app.viewerType = "Derivation";

//methods

app.response = function () { return null; };

app.beep = function (b) { };

app.alert = function (msg) {

window.alert (msqg) ;

}i
Each HTML form field should have its own Field JavaScript object that mimics the source

ECMAScript object.

It is recommended to create a Field object only when the HTML form field is used or
required, creating and maintaining the array of all fields as appropriate. Fields are
identified by name as required by ISO 32000-2, 12.7.4.2 “Field Names”.

EXAMPLE The following _init function is invoked when the HTML file is loaded by calling:
document.addEventListener ("DOMContentLoaded", init);
function init() {
var elems = document.getElementsByTagName ("input") ;
for (var 1 = 0; 1 < elems.length; i++) {
e.addEventListener ("focus", field event);

e.addEventListener ("change", field event);

© 2025 PDF Association 62

PDF Association

e.addEventListener ("click", field event);
//only push when elems[i] doesn’t exist in the all fields array
all fields.push(elems[i]);
}
// the same for "select", "textarea"
do calculations();
}
function field event(e) {

//checks the array of all fields if the field with the name exists.
returns existing or creates a new one

var £ = init field(i.e., target.name);

// keypress - focused text edit
if (e.type == "keypress") {
var keyCode = 0;
if (e.keyCode != undefined && e.keyCode >= 20)
keyCode = e.keyCode;
else if (e.charCode != undefined && e.charCode >= 20)
keyCode = e.charCode;
if (keyCode != 0)
event.change = String.fromCharCode (keyCode) ;
event.selStart = e.target.selectionStart;

event.selkEnd = e.target.selectionEnd;

// similarly, for "change" "click" etc.

//process the event on the field, check results do calculations return

status

return result;

}

// make sure the implementation is consistent and accessed fields
through ECMA Script follow the same pattern

this.getField = function (name) {

© 2025 PDF Association

PDF Association

return init field(name);
}s

One ECMAScript Field object may reference more widget annotations; the same
functionality shall be preserved in derivation to HTML:

B When ECMAScript changes a value, all HTML form fields with the same name shall
change their value.

B When one HTML form field is changed, the corresponding Field object is changed
together with all related HTML form fields.

The processor shall include all document-level ECMAScript methods as defined by the
JavaScript entry in the Names entry in the document catalog dictionary and ECMAScript
page-level events defined by the AA entry in the page dictionary.

When deriving the widget annotation, the processor shall expand the JavaScript library
with methods that are defined for each form field in the form field’s additional actions
dictionary. See ISO 32000-2, “Table 199 - Entries in a form field’s additional-actions
dictionary”.

NOTE 1 It is best practice to generate function names for each field’s method based on the
field identifier, which makes managing the invocation of functions as easy as possible.

Processors should keep all calculated fields in a separate array to have the do_calculation
method optimized.

NOTE 2 HTML form fields always show a formatted value, while real value is preserved in
the Field object.

© 2025 PDF Association 64

PDF Association

Annex C: Encrypted files handling
(normative)

The derivation substitutes the process of rendering pdf files in html environment. If a user
attempts to derive an encrypted pdf file the processor shall perform the authentication by
requesting a password, private key, or any other source of information needed to decrypt
the document.

If this authentication attempt is successful, the processor may open, decrypt, and
generate derived HTML in conformance with this document.

It is the responsibility of the viewer to respect the intent of the document author by
restricting user access to specific features according to the permissions granted by the
authentication process.

If the implementer doesn’t control the use of derived HTML and is not able to guarantee
the restriction of access to the document, it is recommended to change the derivation
algorithm and use techniques that allow only permitted use of the content.

The process of authentication, restricting of features in the viewer environment, or
changes to the derivation algorithm is implementation dependent and therefore beyond
the scope of this document, but in all cases the processor shall include data-pdf-perms
attribute on the body HTML element with the value of permissions granted by
authentication as described in ISO 32000-2, “Table 22 - User access permissions” or “Table
24 - Public-key security handler user access permissions”

Additionally, the viewer that recognizes HTML derived from PDF shall restrict the use of
HTML by disabling the user interface or any other techniques to respect the permissions
granted by the data-pdf-perms attribute.

EXAMPLE - permits printing and copying but disallows modifying the contents
and annotations

<body data-pdf-perms=-44>

© 2025 PDF Association 65

PDF Association

Annex D: Accessibility implications

(informative)

By leveraging the Tagging PDF feature in deriving PDF into HTML it should not be
automatically expected that the derived HTML is equally accessible as the PDF file. It
should not be also expected that any accessible PDF is equally accessible as derived
HTML. The author may wish to present visual information differently or add additional
interactive and navigational capabilities in derived HTML therefore, the required result
from an accessible point of view may differ.

It is the author’s responsibility to achieve accessible html by structuring pdf in a way that
derived HTML conforms with standards for HTML accessibility. This can be achieved by
providing HTML and ARIA structure attributes that are carried into HTML.

© 2025 PDF Association 66

PDF Association

Bibliography

RFC 1738, Uniform Resource Locators (URL) (December, 1994) Internet Engineering Task
Force (IETF)

Tagged PDF Best Practice Guide Syntax (June, 2019), PDF Association

Matterhorn Protocol 1.02 (April, 2014), PDF Association

© 2025 PDF Association

67

	Foreword
	Introduction
	References
	1 Scope
	2 ​Terms and definitions
	3 Notation
	4 ​Algorithm for deriving HTML from well-tagged PDF
	4.1 Technical context
	4.2 Document handling
	4.2.1 ​Head
	4.2.2 Associated files associated with PDF document
	4.2.3 ​The ClassMap
	4.2.4 ​Body
	4.2.5 Pagination

	4.3 ​PDF structure elements
	4.3.1 ​General
	4.3.2 Common processing
	4.3.2.1 ​Processing PDF structure elements
	4.3.2.2 ​When the PDF structure element does not use an explicit namespace
	4.3.2.3 ​When the PDF structure element uses an explicit namespace

	4.3.3 ​Mapping PDF structure element types to HTML elements
	4.3.4 ​Ensuring valid HTML
	4.3.5 Special cases
	4.3.5.1 Document
	4.3.5.2 Headings
	4.3.5.2.1 Explicitly numbered heading
	4.3.5.2.2 Headings in Tables

	4.3.5.3 Caption
	4.3.5.3.1 Captions of Figures
	4.3.5.3.2 Captions of Tables
	4.3.5.3.3 Captions of Lists

	4.3.5.4 ​Lbl
	4.3.5.4.1 Lbl within a LI (list item)
	4.3.5.4.2 Lbl within a Form
	4.3.5.4.3 Lbl as a child of Hn, Caption, TOCI
	4.3.5.4.4 Lbl as a child of other elements
	4.3.5.4.5 Aria attribute on Lbl

	4.3.5.5 ​Notes
	4.3.5.6 ​Figure
	4.3.5.7 Formula
	4.3.5.8 ​L and TOC (lists)
	4.3.5.8.1 List within list
	4.3.5.8.2 L as description list
	4.3.5.8.3 L within P or Sub

	4.3.5.9 NonStruct, Private and Artifact
	4.3.5.10 ​Links and references
	4.3.5.10.1 Destination
	4.3.5.10.2 URI action
	4.3.5.10.3 ​ GoTo action

	4.3.5.11 Forms
	4.3.5.11.1 ​Form field processing
	4.3.5.11.2 Form field processing for PDF structure elements from the HTML namespace
	4.3.5.11.3 Non-interactive forms

	4.3.5.12 ​Code

	4.3.6 Structure element properties
	4.3.6.1 General
	4.3.6.2 Lang
	4.3.6.3 ​Replacement text
	4.3.6.4 ​Alternate description
	4.3.6.5 ​Expansion text
	4.3.6.6 Ref entry

	4.3.7 ​Attributes
	4.3.7.1 ​General
	4.3.7.2 ​Deriving structure attributes to HTML attributes
	4.3.7.3 ​Deriving structure attributes to CSS properties
	4.3.7.4 ​List standard structure attribute owner
	4.3.7.5 ​Table standard structure attribute owner
	4.3.7.6 ​Layout standard structure attribute owner
	4.3.7.7 ​PrintField standard structure attribute owner
	4.3.7.8 HTML
	4.3.7.9 ​CSS
	4.3.7.10 ​ARIA roles
	4.3.7.11 ​User Properties
	4.3.7.12 Others

	4.4 ​Processing of a content element
	4.4.1 ​Paths
	4.4.2 ​Text
	4.4.3 ​Image XObjects and inline images
	4.4.4 ​Form XObjects
	4.4.5 Shadings
	4.4.6 ​Artifacts
	4.4.7 ​Handling marked content sequences
	4.4.7.1 ​Lang attribute in a marked content sequence
	4.4.7.2 ​ActualText attribute in a marked content sequence
	4.4.7.3 ​Alt attribute in a marked content sequence
	4.4.7.4 ​E attribute in a marked content sequence
	4.4.7.5 ​Multiple attributes in a marked content sequence

	4.4.8 ​Processing of an object reference (OBJR)
	4.4.8.1 ​XObjects
	4.4.8.2 ​Annotations (other than of type Link and Widget)
	4.4.8.3 ​Widget annotations
	4.4.8.3.1 ​ ​Mapping widget annotations to HTML
	4.4.8.3.2 Widget annotation attributes

	4.5 ​ECMAScript
	4.6 Associated file processing
	4.6.1 ​General
	4.6.2 URL References
	4.6.3 ​ Media types
	4.6.4 ​Handling media types
	4.6.4.1 General
	4.6.4.2 ​HTML
	4.6.4.3 ​CSS
	4.6.4.4 ​JavaScript
	4.6.4.5 ​Images
	4.6.4.6 ​SVG
	4.6.4.7 ​MathML

	Annex A: Security implications
	Annex B: ECMAscript derivation guidance
	Annex C: Encrypted files handling
	Annex D: Accessibility implications
	Bibliography

